有能在本地运行,扫描图片中是否有人物/人脸的工具嘛 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
ne6rd
V2EX    问与答

有能在本地运行,扫描图片中是否有人物/人脸的工具嘛

  •  
  •   ne6rd 2023-12-05 04:15:29 +08:00 2219 次点击
    这是一个创建于 678 天前的主题,其中的信息可能已经有所发展或是发生改变。

    需求: 本地运行,不依赖网络服务 Windows 环境 扫描某个文件夹下的所有 jpg/png 照片,分辨率大概从 800px 到 4000px 都有可能,检测是否主要拍摄对象是人物/人脸 硬件是 5800x+3060ti ,效率要能接受

    请问目前的技术可能嘛?现成的或者需要哪些开源库可以自己撸一个?有没有 c#支持的,还是说这方面必须要 python

    13 条回复    2023-12-05 13:40:31 +08:00
    ne6rd
        1
    ne6rd  
    OP
       2023-12-05 04:57:40 +08:00   1
    问了 chatgpt ,给了几行代码好像就解决问题了,真香。
    ```
    import cv2

    # Load pre-trained Haar cascade classifier for human detection
    human_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_fullbody.xml')

    # Read the image
    image = cv2.imread('C:\\~\\code\\py\\human_detect\\img\\none.jpg')

    # Convert the image to grayscale
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Detect human bodies in the image
    humans = human_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)

    if len(humans) > 0:
    print("Human detected!")
    else:
    print("No humans detected.")
    ```
    ne6rd
        2
    ne6rd  
    OP
       2023-12-05 07:15:36 +08:00
    然而 haarcascades 检测效果不太行, 也可能是参数调的不对。
    Muniesa
        3
    Muniesa  
       2023-12-05 07:49:21 +08:00 via Android
    有好几个 XML ,可以都试试
    tyzandhr
        4
    tyzandhr  
       2023-12-05 07:57:40 +08:00 via Android
    OpenCV
    wph95
        5
    wph95  
       2023-12-05 08:23:44 +08:00
    mediapipe
    SeaRecluse
        6
    SeaRecluse  
       2023-12-05 09:39:10 +08:00   1 div class="sep5">
    与 New Bing 对话:
    给我是一个使用 insightface 库和 opencv 的 python 脚本对一个文件下的所有图片进行检测,如果图片里有包含人脸,就单独复制到一个文件夹里,加上进度条显示

    ```
    import os
    import cv2
    import shutil
    import insightface
    from tqdm import tqdm

    # 初始化模型
    model = insightface.app.FaceAnalysis()

    # 加载模型
    ctx_id = -1
    model.prepare(ctx_id = ctx_id)

    # 源文件夹和目标文件夹
    src_dir = 'src_dir'
    dst_dir = 'dst_dir'

    # 获取源文件夹中的所有图片
    images = [f for f in os.listdir(src_dir) if os.path.isfile(os.path.join(src_dir, f))]

    # 创建目标文件夹
    os.makedirs(dst_dir, exist_ok=True)

    # 遍历所有图片
    for image in tqdm(images, desc="Processing images"):
    img_path = os.path.join(src_dir, image)
    img = cv2.imread(img_path)

    # 使用模型检测人脸
    faces = model.get(img)

    # 如果检测到人脸,将图片复制到目标文件夹
    if faces:
    print(img_path)
    shutil.copy(img_path, dst_dir)

    ```
    tool2d
        7
    tool2d  
       2023-12-05 09:39:31 +08:00
    以前我做过相关调研,很多算法只能统计正脸效果,两个眼睛一个鼻子那种。

    但是需求方说,还要统计后脑勺,这就有点难度了。
    SeaRecluse
        8
    SeaRecluse  
       2023-12-05 09:59:49 +08:00
    @tool2d 你的需求方要的是人头检测,而你找的算法是人脸检测当然不行喽。人头检测是从人形检测中分出来的子任务。
    x86
        9
    x86  
       2023-12-05 10:04:26 +08:00
    什么库可以做到这种效果
    isquare
        10
    isquare  
       2023-12-05 11:57:13 +08:00   1
    AI 人脸检测都快做到头了,没必要用传统检测算法了

    检测只是大多数人脸人物的第一步,就比如这个项目: https://github.com/ageitgey/face_recognition/blob/master/README_Simplified_Chinese.md ,调一个接口检测人脸,只不过用的 dlib ,检测亚洲人效果一般

    还有很多国内开源项目,比如 https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.7/deploy/README.md

    支持部署一个 server ,可以通过网络接口调用
    mekopean
        11
    mekopean  
       2023-12-05 12:02:13 +08:00
    retinaface 或者
    yolo 官网下个 pt -> from ultralytics import YOLO - > model = YOLO("cfgs/yolov8l.pt") -> results = model(image, cOnf=0.8)
    ne6rd
        12
    ne6rd  
    OP
       2023-12-05 12:46:49 +08:00
    目前测试 face_recognition 中,同样速度下,比 haarcascades 要准确多了
    ne6rd
        13
    ne6rd  
    OP
       2023-12-05 13:40:31 +08:00
    insightface 又远超 face_recognition 速度和准确度
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3063 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 28ms UTC 00:19 PVG 08:19 LAX 17:19 JFK 20:19
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86