
当我将 16G 内存更换为 32G 内存之后,基于 mmorotate 的训练时间反而增强了。 这是我的训练日志:
2023-06-08 19:36:31,696 - mmrotate - INFO - Environment info: ------------------------------------------------------------ sys.platform: linux Python: 3.7.15 (default, Nov 24 2022, 21:12:53) [GCC 11.2.0] CUDA available: True GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.3, V11.3.109 GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0 PyTorch: 1.10.1 PyTorch compiling details: PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX512 - CUDA Runtime 11.3 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.2 - Magma 2.5.2 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, TorchVision: 0.11.2 OpenCV: 4.6.0 MMCV: 1.7.0 MMCV Compiler: GCC 9.3 MMCV CUDA Compiler: 11.3 MMRotate: 0.3.4+794a319 ------------------------------------------------------------ 2023-06-08 19:36:31,954 - mmrotate - INFO - Distributed training: False 2023-06-08 19:36:32,192 - mmrotate - INFO - Config: dataset_type = 'HRSCDataset' data_root = 'data/hrsc/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RResize', img_scale=(1333, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/trainval.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RResize', img_scale=(1333, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ]), val=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/test.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/test.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(interval=1, metric='mAP') optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_cOnfig= dict(grad_clip=dict(max_norm=35, norm_type=2)) lr_cOnfig= dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.3333333333333333, step=[24, 33]) runner = dict(type='EpochBasedRunner', max_epochs=36) checkpoint_cOnfig= dict(interval=1) log_cOnfig= dict(interval=50, hooks=[dict(type='TextLoggerHook')]) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] opencv_num_threads = 0 mp_start_method = 'fork' angle_version = 'le90' model = dict( type='OrientedRCNN', backbOne=dict( type='ResNet', depth=50, num_stages=4, ut_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='OrientedRPNHead', in_channels=256, feat_channels=256, version='le90', anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='MidpointOffsetCoder', angle_range='le90', target_means=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0, 0.5, 0.5]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)), roi_head=dict( type='OrientedStandardRoIHead', bbox_roi_extractor=dict( type='RotatedSingleRoIExtractor', roi_layer=dict( type='RiRoIAlignRotated', out_size=7, num_samples=2, num_orientatiOns=8, clockwise=True), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='RotatedShared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHAOBBoxCoder', angle_range='le90', norm_factor=None, edge_swap=True, proj_xy=True, target_means=(0.0, 0.0, 0.0, 0.0, 0.0), target_stds=(0.1, 0.1, 0.2, 0.2, 0.1)), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.8), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, iou_calculator=dict(type='RBboxOverlaps2D'), ignore_iof_thr=-1), sampler=dict( type='RRandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.8), min_bbox_size=0), rcnn=dict( nms_pre=2000, min_bbox_size=0, score_thr=0.05, nms=dict(iou_thr=0.1), max_per_img=2000))) work_dir = './work_dirs/oriented_rcnn_r50_fpn_3x_hrsc_le90_no' auto_resume = False gpu_ids = range(0, 1) 这是我没有更换内存所需要的训练时间:
2023-04-10 19:13:11,617 - mmrotate - INFO - Epoch [1][50/309] lr: 3.987e-03, eta: 3:40:53, time: 1.197, data_time: 0.050, memory: 4030, loss_rpn_cls: 0.2154, loss_rpn_bbox: 0.0664, loss_cls: 0.0827, acc: 98.8281, loss_bbox: 0.0113, loss: 0.3759, grad_norm: 3.0720 这是我进行内存更换后的训练时间:
23-06-10 13:47:24,479 - mmrotate - INFO - Epoch [1][50/309] lr: 3.987e-03, eta: 4 days, 14:54:31, time: 36.055, data_time: 0.055, memory: 5111, loss_rpn_cls: 0.2287, loss_rpn_bbox: 0.1007, loss_cls: 0.1085, acc: 97.1152, loss_bbox: 0.0055, loss: 0.4434, grad_norm: 3.3885 请问有人碰到过这种情况吗? 怎么进行解决?
1 DigitalFarmer 2023-06-13 20:09:53 +08:00 via Android 没遇到过。。。去 pytorch 的 GitHub 问问? |
2 lloovve 2023-06-13 20:13:17 +08:00 via iPhone 如果内存不一样,注意双通道插法,具体可以百度 |
3 laqow 202-06-14 10:37:26 +08:00 如果主板自己焊了半条内存,可能只能插和它一样的内存,不然通道数减半 |
4 NetLauu 2023-06-14 11:42:46 +08:00 内存没有用双通道插法吧,或者内存频率低了 |
5 saberQi OP |