更换内存条之后,深度学习的训练速度下降 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
请不要在回答技术问题时复制粘贴 AI 生成的内容
saberQi
V2EX    程序员

更换内存条之后,深度学习的训练速度下降

  •  
  •   saberQi 2023-06-13 17:46:24 +08:00 2246 次点击
    这是一个创建于 927 天前的主题,其中的信息可能已经有所发展或是发生改变。

    当我将 16G 内存更换为 32G 内存之后,基于 mmorotate 的训练时间反而增强了。 这是我的训练日志:

    2023-06-08 19:36:31,696 - mmrotate - INFO - Environment info: ------------------------------------------------------------ sys.platform: linux Python: 3.7.15 (default, Nov 24 2022, 21:12:53) [GCC 11.2.0] CUDA available: True GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.3, V11.3.109 GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0 PyTorch: 1.10.1 PyTorch compiling details: PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX512 - CUDA Runtime 11.3 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.2 - Magma 2.5.2 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, TorchVision: 0.11.2 OpenCV: 4.6.0 MMCV: 1.7.0 MMCV Compiler: GCC 9.3 MMCV CUDA Compiler: 11.3 MMRotate: 0.3.4+794a319 ------------------------------------------------------------ 2023-06-08 19:36:31,954 - mmrotate - INFO - Distributed training: False 2023-06-08 19:36:32,192 - mmrotate - INFO - Config: dataset_type = 'HRSCDataset' data_root = 'data/hrsc/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RResize', img_scale=(1333, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/trainval.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RResize', img_scale=(1333, 800)), dict(type='RRandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ]), val=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/test.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='HRSCDataset', classwise=False, ann_file='data/hrsc/ImageSets/test.txt', ann_subdir='data/hrsc/FullDataSet/Annotations/', img_subdir='data/hrsc/FullDataSet/AllImages/', img_prefix='data/hrsc/FullDataSet/AllImages/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(800, 800), flip=False, transforms=[ dict(type='RResize'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(interval=1, metric='mAP') optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_cOnfig= dict(grad_clip=dict(max_norm=35, norm_type=2)) lr_cOnfig= dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.3333333333333333, step=[24, 33]) runner = dict(type='EpochBasedRunner', max_epochs=36) checkpoint_cOnfig= dict(interval=1) log_cOnfig= dict(interval=50, hooks=[dict(type='TextLoggerHook')]) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] opencv_num_threads = 0 mp_start_method = 'fork' angle_version = 'le90' model = dict( type='OrientedRCNN', backbOne=dict( type='ResNet', depth=50, num_stages=4, ut_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='OrientedRPNHead', in_channels=256, feat_channels=256, version='le90', anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='MidpointOffsetCoder', angle_range='le90', target_means=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0, 0.5, 0.5]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)), roi_head=dict( type='OrientedStandardRoIHead', bbox_roi_extractor=dict( type='RotatedSingleRoIExtractor', roi_layer=dict( type='RiRoIAlignRotated', out_size=7, num_samples=2, num_orientatiOns=8, clockwise=True), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='RotatedShared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHAOBBoxCoder', angle_range='le90', norm_factor=None, edge_swap=True, proj_xy=True, target_means=(0.0, 0.0, 0.0, 0.0, 0.0), target_stds=(0.1, 0.1, 0.2, 0.2, 0.1)), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.8), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, iou_calculator=dict(type='RBboxOverlaps2D'), ignore_iof_thr=-1), sampler=dict( type='RRandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.8), min_bbox_size=0), rcnn=dict( nms_pre=2000, min_bbox_size=0, score_thr=0.05, nms=dict(iou_thr=0.1), max_per_img=2000))) work_dir = './work_dirs/oriented_rcnn_r50_fpn_3x_hrsc_le90_no' auto_resume = False gpu_ids = range(0, 1) 

    这是我没有更换内存所需要的训练时间:

    2023-04-10 19:13:11,617 - mmrotate - INFO - Epoch [1][50/309] lr: 3.987e-03, eta: 3:40:53, time: 1.197, data_time: 0.050, memory: 4030, loss_rpn_cls: 0.2154, loss_rpn_bbox: 0.0664, loss_cls: 0.0827, acc: 98.8281, loss_bbox: 0.0113, loss: 0.3759, grad_norm: 3.0720 

    这是我进行内存更换后的训练时间:

    23-06-10 13:47:24,479 - mmrotate - INFO - Epoch [1][50/309] lr: 3.987e-03, eta: 4 days, 14:54:31, time: 36.055, data_time: 0.055, memory: 5111, loss_rpn_cls: 0.2287, loss_rpn_bbox: 0.1007, loss_cls: 0.1085, acc: 97.1152, loss_bbox: 0.0055, loss: 0.4434, grad_norm: 3.3885 

    请问有人碰到过这种情况吗? 怎么进行解决?

    6 条回复    2023-06-14 13:33:40 +08:00
    DigitalFarmer
        1
    DigitalFarmer  
       2023-06-13 20:09:53 +08:00 via Android
    没遇到过。。。去 pytorch 的 GitHub 问问?
    lloovve
        2
    lloovve  
       2023-06-13 20:13:17 +08:00 via iPhone
    如果内存不一样,注意双通道插法,具体可以百度
    laqow
        3
    laqow  
       202-06-14 10:37:26 +08:00
    如果主板自己焊了半条内存,可能只能插和它一样的内存,不然通道数减半
    NetLauu
        4
    NetLauu  
       2023-06-14 11:42:46 +08:00
    内存没有用双通道插法吧,或者内存频率低了
    saberQi
        5
    saberQi  
    OP
       2023-06-14 13:33:18 +08:00
    我的电脑是笔记本 用的是戴尔 G15 然后使用的内存时三星 DDR4 3200 *2 应该是双通道吧..
    @NetLauu #4
    @lloovve #2
    saberQi
        6
    saberQi  
    OP
       2023-06-14 13:33:40 +08:00
    @laqow #3 之前也是三星的...
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3627 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 10:18 PVG 18:18 LAX 02:18 JFK 05:18
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86