求助 Python 大佬 怎样给他修改成直接输入图片 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
canxun
V2EX    Python

求助 Python 大佬 怎样给他修改成直接输入图片

  •  
  •   canxun 2021-11-26 11:29:33 +08:00 2034 次点击
    这是一个创建于 1492 天前的主题,其中的信息可能已经有所发展或是发生改变。
    现在是随机调用库的图片 能不能改成指定图片
    比如说("2.jpg")
    这样



    """

    ****************** 实现 MNIST 手写数字识别 ************************


    ****************************************************************

    """

    # -*- coding: utf-8 -*-

    import cv2
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    import torchvision
    from torchvision import datasets, transforms



    # 默认预测四张含有数字的图片

    BATCH_SIZE = 4
    # 默认使用 cpu 加速
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")



    # 构建数据转换列表

    tsfrm = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1037,), (0.3081,))
    ])

    # 测试集

    test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root = 'data', train = False, download = True,
    transform = tsfrm),
    batch_size = BATCH_SIZE, shuffle = True)



    # 定义图片可视化函数

    def imshow(images):
    img = torchvision.utils.make_grid(images)
    img = img.numpy().transpose(1, 2, 0)
    std = [0.5, 0.5, 0.5]
    mean = [0.5, 0.5, 0.5]
    img = img * std + mean
    # 将图片高和宽分别赋值给 x1,y1
    x1, y1 = img.shape[0:2]
    # 图片放大到原来的 5 倍,输出尺寸格式为(宽,高)
    enlarge_img = cv2.resize(img, (int(y1*5), int(x1*5)))
    cv2.imshow('image', enlarge_img)
    cv2.waitKey(0)



    # 定义一个 LeNet-5 网络,包含两个卷积层 conv1 和 conv2 ,两个线性层作为输出,最后输出 10 个维度

    # 这 10 个维度作为 0-9 的标识来确定识别出的是哪个数字。

    class ConvNet(nn.Module):
    def __init__(self):
    super().__init__()
    # 1*1*28*28
    # 1 个输入图片通道,10 个输出通道,5x5 卷积核
    self.conv1 = nn.Conv2d(1, 10, 5)
    self.conv2 = nn.Conv2d(10, 20, 3)
    # 全连接层、输出层 softmax,10 个维度
    self.fc1 = nn.Linear(20 * 10 * 10, 500)
    self.fc2 = nn.Linear(500, 10)


    # 正向传播
    def forward(self, x):
    in_size = x.size(0)
    out = self.conv1(x) # 1* 10 * 24 *24
    out = F.relu(out)
    out = F.max_pool2d(out, 2, 2) # 1* 10 * 12 * 12
    out = self.conv2(out) # 1* 20 * 10 * 10
    out = F.relu(out)
    out = out.view(in_size, -1) # 1 * 2000
    out = self.fc1(out) # 1 * 500
    out = F.relu(out)
    out = self.fc2(out) # 1 * 10
    out = F.log_softmax(out, dim=1)
    return out



    # 主程序入口
    if __name__ == "__main__":
    model_eval = ConvNet()
    # 加载训练模型
    model_eval.load_state_dict(torch.load('./MNISTModel.pkl', map_location=DEVICE))
    model_eval.eval()
    # 从测试集里面拿出几张图片
    images,labels = next(iter(test_loader))
    # 显示图片
    imshow(images)
    # 输入
    inputs = images.to(DEVICE)
    # 输出
    outputs = model_eval(inputs)
    # 找到概率最大的下标
    _, preds = torch.max(outputs, 1)
    # 打印预测结果
    numlist = []
    for i in range(len(preds)):
    label = preds.numpy()[i]
    numlist.append(label)
    List = ' '.join(repr(s) for s in numlist)

    print('当前预测的数字为: ',List)
    5 条回复    2021-12-05 13:40:27 +08:00
    canxun
        1
    canxun  
    OP
       2021-11-26 11:42:00 +08:00
    wuhu
    coderluan
        2
    coderluan  
       2021-11-26 11:47:42 +08:00
    # 从测试集里面拿出几张图片
    images,labels = next(iter(test_loader))

    改成

    images=cv2.imread("2.jpg")
    canxun
        3
    canxun  
    OP
       2021-11-26 11:53:05 +08:00
    @coderluan File "d:/pycode/.vscode/Untitled-1.py", line 107, in <module>
    imshow(images)
    File "d:/pycode/.vscode/Untitled-1.py", line 51, in imshow
    img = torchvision.utils.make_grid(images)
    File "C:\ruanjian\python\lib\site-packages\torch\autograd\grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
    File "C:\ruanjian\python\lib\site-packages\torchvision\utils.py", line 46, in make_grid
    raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
    TypeError: tensor or list of tensors expected, got <class 'NoneType'>
    canxun
        4
    canxun  
    OP
       2021-11-28 23:43:23 +08:00
    11
    imn1
        5
    imn1  
       2021-12-05 13:40:27 +08:00
    你要将
    test_loader = torch.utils.data.DataLoader(
    datasets.MNIST(root = 'data', train = False, download = True,
    transform = tsfrm),
    batch_size = BATCH_SIZE, shuffle = True)
    这句改成函数,参数就是里面的'data',并返回 test_loader

    这句 是从 data 目录获取文件的,如果你要改成单文件,就要看手册 torch.utils.data.DataLoader 是否提供这个功能
    不提供的话,你就需要把指定文件扔进某个目录,并把目录路径传给 root 这个位置
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1042 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 23ms UTC 18:20 PVG 02:20 LAX 10:20 JFK 13:20
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86