如何优化 Python 计算超大字典的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
WilliamHL
V2EX    Python

如何优化 Python 计算超大字典的问题

  •  
  •   WilliamHL 2021-02-04 15:20:27 +08:00 3926 次点击
    这是一个创建于 1712 天前的主题,其中的信息可能已经有所发展或是发生改变。

    目前遇到一个这样的问题: 从数据库中读取数据,存到字典的内存中(减少读取带来的性能消耗), 字典的键是 int 类型,字典的值是 longtext,一次读取大概 200 条左右的数据,后续可能会过千。 这个字典超级大,涉及到代码运算中还有其他计算、字典的 copy 、声明新的 list 等等操作,会存在多个这样的数据,导致虚拟内存峰值飙升到接近 50GB,mackbook 都是 oom 。

    只想到是不是可以采用 redis 来代替字典操作,减少内存消耗,不知道还有没有其他方式,感谢各位 v 友~

    第 1 条附言    2021-02-04 20:31:27 +08:00
    30 条回复    2021-02-08 10:04:46 +08:00
    ml1344677
        1
    ml1344677  
       2021-02-04 15:27:18 +08:00
    如果预先知道大小的话,是不是可以通过重写__hash()__来做出完美哈希
    TimePPT
        2
    TimePPT  
    PRO
       2021-02-04 15:30:44 +08:00
    为啥不直接读数据库,还要存字典啊
    linw1995
        3
    linw1995  
       2021-02-04 16:07:27 +08:00
    原始数据过千就 50 GB,不排查一下会不会有内存泄露的问题?
    F281M6Dh8DXpD1g2
        4
    F281M6Dh8DXpD1g2  
       2021-02-04 16:08:49 +08:00
    你肯定在方法签名里面初始化 list 了
    shuax
        5
    shuax  
       2021-02-04 17:23:02 +08:00
    200 条就要 50G……
    Wincer
        6
    Wincer  
       2021-02-04 17:42:55 +08:00
    贴代码吧,看看有什么操作。200 个 key 占 50g 内存是不可能的,之前处理过 80w 个 key 的字典,倒是占用了几十 g 后 oom 了
    firefox12
        7
    firefox12  
       2021-02-04 17:52:26 +08:00
    如果你的 200 条数据没有 50G 那就是你代码问题, 提高下 python 代码水平。 你放在 redis 里不解决任何问题。
    WilliamHL
        8
    WilliamHL  
    OP
       2021-02-04 18:49:29 +08:00
    ``` python

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    import os
    import copy
    import json
    import logging
    import pymysql
    import itertools
    import pandas as pd
    import multiprocessing as mp

    PWD = os.path.dirname(os.path.realpath(__file__))
    LOGPATH = os.path.join(PWD, './info.log')
    logging.basicConfig(level=logging.INFO,
    format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s',
    filename=LOGPATH)


    class FuncTactic:

    def __init__(self, task_id):
    self.task_id = task_id

    def tactic(self):
    case_id_path = "/Users/xxxx/Downloads/" + str(self.task_id) + ".log"
    with open(case_id_path, 'r', encoding='utf-8') as content:
    result_list = json.load(content)
    content.close()
    case_id_func = {} # 这个是 id 对应的方法变更
    for i in result_list:
    case_id_func[str(i.get('c_id'))] = i.get('c_c_func_origin_list')

    cOnn= self.connect_db("localhost", 3306, "root", "root1234", "code_trees")
    table_name = "android_code_tree"
    sql = "SELECT case_id, trees FROM %s where case_id in (%s)" % (table_name, str(list(case_id_func.keys()))[
    1:-1])
    covs_pd = pd.read_sql(sql, conn)
    funcs_dict = {} # 这个是 id 对应的关系树
    for row in covs_pd.itertuples():
    id = int(getattr(row, "case_id"))
    funcs = getattr(row, "trees")
    if funcs is None or len(funcs) < 1:
    continue
    else:
    funcs_dict[id] = funcs
    conn.close()

    # 读取文件获取方法变更和对应的 case
    func_case_id = {} # 方法对应的变更 id
    cOnn= self.connect_db("x.x.x.x", 3306, "test", "test", "code_ing")
    table_name = "task_diff_case_relation"
    sql = "SELECT relation FROM %s where taskid = %s" % (table_name, self.task_id)
    relation = pd.read_sql(sql, conn)
    functiOns= ""
    for row in relation.itertuples():
    functiOns= getattr(row, "relation")
    conn.close()
    for i in json.loads(functions):
    func_case_id[i.get('diff_code')] = i.get('caseid_list')
    # 计算基类方法
    pool = mp.Pool(mp.cpu_count())
    jobs = []
    for _dict in self.split_dict(func_case_id, mp.cpu_count()):
    jobs.append(pool.apply(self.get_dict_common_func, _dict))

    res = [job.get() for job in jobs]
    pool.close()

    common_funcs = list(itertools.chain(*map(eval, res)))

    # 过滤
    result_case_id_func = copy.deepcopy(case_id_func)
    flitur_result = {}
    for id, fun_list in case_id_func.items():
    if set(fun_list) < set(common_funcs):
    in_list = []
    for fun in fun_list:
    func_case_id[fun].remove(id)
    if len(func_case_id[fun]) > 0:
    if id in result_case_id_func:
    del result_case_id_func[id]
    in_list.append(fun)
    flitur_result[id] = in_list
    print(result_case_id_func)
    print(flitur_result)
    logging.info(str(result_case_id_func.keys()))
    logging.info(str(flitur_result.keys()))
    print(
    len(list(flitur_result.keys())) / (len(list(flitur_result.keys())) + len(list(result_case_id_func.keys()))))

    def connect_db(self, host, port, user, passwd, db):
    try:
    cOnn= pymysql.connect(host=host, port=port, user=user, passwd=passwd, db=db)
    return conn
    except Exception as e:
    logging.error("connect db error : " + str(e))
    return None

    def get_dict_common_func(self, _dict):
    common_funcs = []
    for fun, ids in _dict.items():
    if len(_dict[fun]) >= 40:
    common_funcs.append(fun)
    continue
    else:
    in_list = [self.get_funcs_lines_from_tree(_dict[int(x)], fun) for x in ids]
    if len(in_list) > 100:
    common_funcs.append(fun)
    continue

    return common_funcs

    def get_funcs_lines_from_tree(self, tree_string, func):
    data = tree_string.split("\n")
    index_list = [data.index(i) for i in data if func in i]

    result_list = []
    for i in index_list:
    list_in = [data[i].split(" ")[-1].lstrip("L")]
    prefix = self.rreplace(data[i].split("L")[0], "| ", "")

    for j in data[0:i][::-1]:
    if prefix in j:
    # print("old new_prefix: ", prefix)
    prefix = self.rreplace(prefix, "| ", "")
    # print("新建 new_prefix: ", prefix)
    list_in.append(j.split(" ")[-1].lstrip("L"))
    continue
    else:
    pass

    # 查找完成所有的前向调用,之后查找后向调用,先还原 prefxi
    prefix = self.rreplace(data[i].split("L")[0], "| ", "| | ")
    list_in = list_in[::-1]
    for j in data[i:]:
    if prefix in j:
    prefix = self.rreplace(prefix, "| ", "| | ")
    list_in.append(j.split(" ")[-1].lstrip("L"))
    continue
    else:
    pass
    if len(list_in) > 0:
    result_list.append(list_in)

    if len(result_list) > 0:
    return result_list
    else:
    return

    def rreplace(self, s, old, new):
    li = s.rsplit(old, 1)
    return new.join(li)

    def split_dict(self, x, chunks):
    i = itertools.cycle(range(chunks))
    split = [dict() for _ in range(chunks)]
    for k, v in x.items():
    split[next(i)][k] = v
    return split


    if __name__ == "__main__":
    fun = FuncTactic(993)
    fun.tactic()


    ```
    WilliamHL
        9
    WilliamHL  
    OP
       2021-02-04 18:49:55 +08:00
    @Wincer 在 8 楼贴了一下代码
    WilliamHL
        10
    WilliamHL  
    OP
       2021-02-04 18:52:17 +08:00
    @TimePPT 觉得来回读写消耗性能
    WilliamHL
        11
    WilliamHL  
    OP
       2021-02-04 18:52:58 +08:00
    @linw1995 感谢啊,周末排查一下
    laqow
        12
    laqow  
       2021-02-04 18:59:09 +08:00 via Android
    会不会是 mp.Pool 里每个线程复制了一份字典
    WilliamHL
        13
    WilliamHL  
    OP
       2021-02-04 19:09:34 +08:00
    @laqow Pool 是我新更新的,之前是单进程的
    WilliamHL
        14
    WilliamHL  
    OP
       2021-02-04 19:10:14 +08:00
    @laqow 你竟然能看懂,我还没排版
    skinny
        15
    skinny  
       2021-02-04 19:15:51 +08:00
    如果你的代码没问题,数据确实很多,以我有限的数据处理经验建议你不要在 python 的基础数据结构里保存太多数据,内存会爆炸的,占用的内存会远远超过你的预期(我遇到的是内存占用十倍起步)。
    WilliamHL
        16
    WilliamHL  
    OP
       2021-02-04 19:25:06 +08:00
    @skinny 考虑过采用 array 实现,稍微看了下貌似能降低内存占用
    laqow
        17
    laqow  
       2021-02-04 19:47:46 +08:00 via Android
    @WilliamHL 太长了看不懂,猜的,遇到过这个引起的问题
    DoctorCat
        18
    DoctorCat  
       2021-02-05 02:05:53 +08:00
    Linux 下进程栈的默认大小是 10MB,进程是不是复制太多了没有退出工作进程?看看进程树情况,试试 close 后 join 等待进程结束。不然会产生很多僵尸进程。
    todd7zhang
        19
    todd7zhang  
       2021-02-05 09:20:40 +08:00
    只能猜是你的 longtext 处理的时候造出太多的新的 str 了
    Wincer
        20
    Wincer  
       2021-02-05 10:45:58 +08:00
    get_funcs_lines_from_tree 里面有太多针对字符串的切片操作了,Python 每一次对字符串的切片都会内存复制。按照你的说法如果这个字符串很长很长的话,确实会造成内存的飙升
    WilliamHL
        21
    WilliamHL  
    OP
       2021-02-05 11:27:07 +08:00
    @DoctorCat 大概就是 19 楼和 20 提到的问题,value 计算了很多中间层的 list 和 str 造成的,但是目前这些都是需要进行的中间层计算,暂时没有想到好的办法
    WilliamHL
        22
    WilliamHL  
    OP
       2021-02-05 11:31:07 +08:00
    @Wincer 是这样的但是不知道有没有什么好的办法,最后坏的办法就是进行分次读取,但是感觉多 db 读取,会造成程序执行时间过长
    DoctorCat
        23
    DoctorCat  
       2021-02-05 11:44:53 +08:00
    @WilliamHL 善用 Del
    kele1997
        24
    kele1997  
       2021-02-05 14:26:06 +08:00   1
    你使用的是多进程,而不是多线程。多进程传参,参数会拷贝到新的子进程中。

    你可以试试下面的代码,你会发现,一个进程的时候,内存占用在 400 MB 左右
    多个进程的时候,每个进程占用内存都在 400MB 左右

    而且使用多进程模块时,还有一个等待的主进程模块,所以你的参数拷贝了好多次之后,内存就爆炸了。。

    ```python3
    import time
    from multiprocessing import Process

    ll = [i for i in range(10000000)]



    def test(ll):
    while True:
    time.sleep(0.1)

    p1 = Process(target=test, args=(ll,))
    p1.start()

    # 开第二个 注释掉 p1.join
    p1.join()
    # 再开新的进程
    '''
    p2 = Process(target=test, args=(ll,))
    p2.start()

    p1.join()
    '''
    ```
    kele1997
        25
    kele1997  
    /div>   2021-02-05 14:35:00 +08:00
    另外你可以尝试使用一下 pypy 解释器,在上面的代码中,使用 cpython 解释器每个进程占用内存 400MB 左右,而使用 pypy 解释器只需要打给虚拟内存 200 MB,实际物理占用 140MB !!
    WilliamHL
        26
    WilliamHL  
    OP
       2021-02-05 14:41:23 +08:00
    @DoctorCat 尝试了一下 del 确实比 pop 占用多一些内存。感觉峰值内存还是在切片和推导上
    WilliamHL
        27
    WilliamHL  
    OP
       2021-02-05 14:43:20 +08:00
    @kele1997 感谢,我去尝试一下。多进程是后来改写的,还没有验证,数据上都是之前单进程执行出现的
    kele1997
        28
    kele1997  
       2021-02-05 14:45:14 +08:00   1
    看到上面还有老哥说,许多中间变量也占用内存,可以使用 DEL 删除。其实 python3 的垃圾回收是引用奇数,我们可以把前面的计算都包装到函数中,函数的作用域结束之后,函数内部的内存都会回收掉

    例如,还是下面的代码,使用函数,创建列表之后,主进程只需要 10 几兆的内存,而只有工作进程 p1 才会占用 400MB 内存

    ```python
    def createlist():
    ll = [i for i in range(10000000)]
    # 这里可以添加一些中间结果,比如 tmp 之类的中间结果,这些都会回收掉
    tmp = [j for j in range(1111,1111111)]
    return ll

    print(gc.isenabled())


    def test(ll):
    while True:
    time.sleep(0.1)



    p1 = Process(target=test, args=(createlist(),))
    p1.start()


    p1.join()
    ```
    Wincer
        29
    Wincer  
       2021-02-05 14:45:51 +08:00
    @WilliamHL 使用 memoryview 试试吧,先把 str 转成 memoryview,进行切片操作和修改操作,在操作完成的时候再转化回来。
    ghostviper
        30
    ghostviper  
       2021-02-08 10:04:46 +08:00
    best practise 请使用 pandas 来操作
        帮助文档     自助推广系统     博客     API     FAQ     Solana     5543 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 32ms UTC 09:02 PVG 17:02 LAX 02:02 JFK 05:02
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86