机器学习的数学基础,包含哪些内容 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
James369
V2EX    机器学习

机器学习的数学基础,包含哪些内容

  •  
  •   James369 2020-12-21 09:41:56 +08:00 3416 次点击
    这是一个创建于 1756 天前的主题,其中的信息可能已经有所发展或是发生改变。
    机器学习中有很多算法依赖高等数学才看得懂。

    那么这些数学一般分为哪些课程?
    是否有必要专针对性的学习下这些课程? 比如花个 2 年时间去投入。或者有什么相关的资质认证考试去考一下。
    第 1 条附言    2020-12-21 12:28:23 +08:00
    如果有这方面的权威的资质认证,对于未来找工作有帮助的那种。。
    18 条回复    2021-03-19 14:19:27 +08:00
    murmur
        1
    murmur  
       2020-12-21 09:46:32 +08:00
    你如果大学的概率论 微积分 线性代数这些都能考到 90+ 不是突击的 那还是有突破炼丹可能的

    最基本的数学都看不懂 那论文更白扯了 还是专心炼丹吧

    工程跟理论还是有点差别,数学只是保证你能看懂,论文还是要看,一个巨复杂的公式,这个影响小舍掉,这个忽略不计,这个可以换掉,改来改去最后就能用电脑求解了
    James369
        2
    James369  
    OP
       2020-12-21 09:51:22 +08:00
    @murmur 你这么一说也对,机器学习即属于学术范畴也属于工程应用,所以不知道如何有效的去学,到底是要学数学,还是学各种框架呢
    murmur
        3
    murmur  
       2020-12-21 09:52:28 +08:00
    @James369 学数学一是基础,二是直接劝退不适合的人,我认为数学是真的看天赋,不是谁随随便便就能学明白的
    jmc891205
        4
    jmc891205  
       2020-12-21 10:22:22 +08:00
    IgniteWhite
        5
    IgniteWhite  
       2020-12-21 10:30:46 +08:00
    咱不讲空话,就看任何机器学习的第一课:高斯过程。里面有这几个数学上的东西,我本科数分线代常微分方程概率论都没具体讲过,学的时候是自己推了一段时间:

    矩阵的求导
    多变量高斯分布的协方差
    知道高斯分布的 prior,怎么推贝叶斯的 posterior 概率分布
    如何理解无限长的向量等同于函数

    把这些搞通了,算是能理解高斯过程了。机器学习算是入门
    IgniteWhite
        6
    IgniteWhite  
       2020-12-21 10:34:10 +08:00
    资质认证就是本科考试吧,现在有讲概率机器学习的专业,一半会把这门课放到大三下大四上,大一会学我在五楼提到的那些数学基础课。不知道楼主基础怎么样
    IgniteWhite
        7
    IgniteWhite  
       2020-12-21 10:40:40 +08:00
    我业余学习的感受是,框架和数学也是分不开的,不管你用 tensorflow 还是 pytorch,你训练一个模型的本质是从 prior 求 posterior,用 marginal likelihood 等等做评估。这些概念会频繁出现在框架 package 的文档里,要是数学上没啥谱,连方法名都看不懂,别说参数的解释了
    IgniteWhite
        8
    IgniteWhite  
       2020-12-21 10:53:04 +08:00 via iPhone
    @jmc891205 看了一下,这本书真不错,把本科工程专业数学课和机器学习之间的空当基本填了
    A3m0n
        9
    A3m0n  
       2020-12-21 11:09:38 +08:00
    futou
        10
    futou  
       2020-12-21 11:27:37 +08:00
    如果指的是是深度学习,实际上能手推反向传播已经超过 80%宣称自己会深度学习的
    如果指的是传统机器学习,能把贝叶斯公式写对也能超过 80%宣称自己会机器学习的
    这个方向门槛太低,什么人都有,而且是结果导向,基础不值得深入学习。上上网课,把基本原理搞懂,就已经超过绝大多数人了。除非想引领潮流,那需要好好学。
    非得想搞个资格认证,我记得 coursera 等都有听课证书。
    chizuo
        11
    chizuo  
       2020-12-21 11:28:43 +08:00
    @IgniteWhite 老哥你是不是在读 PRML

    hhhh 好奇好奇
    cmostuor
        12
    cmostuor  
       2020-12-21 11:36:39 +08:00
    @murmur 不然机器学习这行为啥那么高薪 其实数学不难但数学公式看着真让人眼花
    IgniteWhite
        13
    IgniteWhite  
       2020-12-21 11:40:58 +08:00 via iPhone
    @chizuo 我去这都能被发现,我的确在学 bishop 组里 ramussen 开的课,讲义应该和 PRML 差不多
    IgniteWhite
        14
    IgniteWhite  
       2020-12-21 11:54:00 +08:00 via iPhone
    @chizuo hmm rasmussen 并不是 bishop 的学生,他们都在剑桥我以为有关系的……总之我在旁听一个本科生课程
    necomancer
        15
    necomancer  
       2020-12-22 11:39:59 +08:00
    linear algebra
    vector calculus
    tensor algebra
    measure theory and probability (modern probability theory & random processes)
    functional analysis
    以及其必备基础知识。推荐 SUMS 系列,先找这些的书,然后看序,作者会说必备基础知识是什么。虽然不做具体研究的话不用太深入,但基础概念和一个很宏观的知识脉络必须有。
    LYEHIZRF
        16
    LYEHIZRF  
       2021-01-06 11:21:37 +08:00
    考个研 考研数学过了就没什么问题
    jiyuanz
        17
    jiyuanz  
       2021-01-23 21:24:33 +08:00
    @necomancer 另外加个 convex optimization
    huzhikuizainali
        18
    huzhikuizainali  
       2021-03-19 14:19:27 +08:00
    @murmur #1 炼丹我知道。请问什么是“突破炼丹”?
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     903 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 24ms UTC 22:36 PVG 06:36 LAX 15:36 JFK 18:36
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86