请教一下这段代码的时间复杂度 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
Helsing
V2EX    算法

请教一下这段代码的时间复杂度

  •  
  •   Helsing 2020-12-02 11:01:51 +08:00 1554 次点击
    这是一个创建于 1826 天前的主题,其中的信息可能已经有所发展或是发生改变。
    // 全局变量,大小为 10 的数组 array,长度 len,下标 i 。 int array[] = new int[10]; int len = 10; int i = 0; // 往数组中添加一个元素 void add(int element) { if (i >= len) { // 数组空间不够了 // 重新申请一个 2 倍大小的数组空间 int new_array[] = new int[len * 2]; // 把原来 array 数组中的数据依次 copy到 new_array for (int j = 0; j < len; ++j) { new_array[j] = array[j]; } // new_array 复制给 array,array 现在大小就是 2 倍 len 了 array = new_array; len = 2 * len; } // 将 element 放到下标为 i 的位置,下标 i 加一 array[i] = element; ++i; } 

    这是我在一个课程里看到的例子,假如说调用 n 次 add 方法,最好时间复杂度最坏时间复杂度平均时间复杂度分别是多少?


    下面这个是课程评论中的一个答案,讲师也说是对的:

    1. 最好情况时间复杂度为 O(1)

    2. 最坏情况分析:

      最坏情况代码执行的次数跟每次数组的长度有关

      第 1 次调用 add 的执行的次数为 n ,

      第 2 次调用 add 的执行的次数为 2n ,

      第 3 次调用 add 的执行的次数为 2^2 * n

      第 k 次调用 add 的执行的次数为 2^(k-1) * n

      最坏时间复杂度为 O(n)

    3. 平均情况分析 当每次遇到最坏情况时数组会进行 2 倍扩容,原数组被导入新数组,虽然数组的长度变大了,但是插入操作落在的区间的长度是一样的,分别是 0~len-1, len~(2len-1), ....;

      插入的情况仍是 len+1 种:0~len-1 和插满之后的 O(len)

      所以每次插入的概率是:p= 1/len+1

      最后求出加权平均时间复杂度为 1*p + 2*p+ + len * p + len * p = O(1) ;

    4. 均摊时间复杂度 O(1)

    5. 而均摊复杂度由于每次 O(len) 的出现都跟着 lenO(1),是前后连贯的,因而将 O(len) 平摊到前 len 次上,得出平摊复杂度是 O(1)


    但是按我的理解:

    • 最坏情况分析:

      最坏情况代码执行的次数跟每次数组的长度有关

      第 1 次调用 add 的执行的次数为 2^0 * 10,

      第 2 次调用 add 的执行的次数为 2^1 * 10 ,

      第 3 次调用 add 的执行的次数为 2^2 * 10

      第 n 次调用 add 的执行的次数为 2^(n-1) * 10 = 2^n * 5

      常系数可以省略,所以调用 n 次 add 方法的最差时间复杂度应该时 2^n

    我看课程评论里面都把数组的长度假设为 n,但是数组的初始长度明明是 10,这样假设的话跟上面的代码根本就不是一个意思了。我觉得 n 应该是调用 add 的次数才对。

    大家怎么看?

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5621 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 01:47 PVG 09:47 LAX 17:47 JFK 20:47
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86