pandas 关于 groupby 的分组保存问题:如何将分组完以后的值按照某个列分别存为新 dataframe? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
thinszx
V2EX    Python

pandas 关于 groupby 的分组保存问题:如何将分组完以后的值按照某个列分别存为新 dataframe?

  •  
  •   thinszx
    thinszx 2020-03-18 17:58:10 +08:00 5998 次点击
    这是一个创建于 2034 天前的主题,其中的信息可能已经有所发展或是发生改变。

    有一个如下的 DataFrame

    A B C
    0 a 1 c
    1 a 3 a
    2 a 2 b
    3 c 3 a
    4 c 2 b
    5 c 1 c
    6 b 2 b
    7 b 3 a
    8 b 1 c

    我已经对这个 DataFrame 做了处理,将它按照A列分组以后又在各组内对B列进行了排序,如 df.groupby('A').apply(lambda x: x.sort_values('B')).reset_index(drop = True)

    A B C
    0 a 1 c
    1 a 2 b
    2 a 3 a
    3 b 1 c
    4 b 2 b
    5 b 3 a
    6 c 1 c
    7 c 2 b
    8 c 3 a

    但我现在想把每个分组按照A列导出,例如导出成这样的(在这里只列了 a 分组,但我也需要 b 和 c 的分组)

    A B C
    0 a 1 c
    1 a 2 b
    2 a 3 a

    我本来的考虑是写一个 for 循环,在开头记录一个 flag 值,对之后的列进行比较,每次遍历到新的分组就更新 flag,但这样感觉有些复杂了,想问问各位有没有什么好的方法呢?

    9 条回复    2020-03-19 20:26:27 +08:00
    jyyx
        1
    jyyx  
       2020-03-19 08:46:56 +08:00
    list(df.groupby('a')) 是要这个吗?
    MisterLee
        2
    MisterLee  
       2020-03-19 10:42:41 +08:00
    df_1 = df.groupby('A').apply(lambda x: x.sort_values('B')).reset_index(drop = True)
    for item in df_1['A'].unique():
    df_2 = df_1[df_1['A'] == item]
    df_2.to_xxx #导出
    wittyfans
        3
    wittyfans  
       2020-03-19 12:10:33 +08:00   1
    thinszx
        4
    thinszx  
    OP
       2020-03-19 12:13:45 +08:00
    @jyyx 谢谢你的回答,不过和我想得有一些出入,我想得到的是拆分后的 DataFrame,因为后续对各个分组的操作还要用到 pandas 的一些函数

    目前我解决的方法是新开了一个列表,来存储排序后 DataFrame 中各个分组的大小(直接调用了 count()函数),然后用了一个 for 循环每次切片操作,得到小的 DataFrame

    大致的做法像这样:
    itr = 0 # 起始指针
    sorted_group_list = [] # 存放每个小分组对象
    separate_group_counts = np.array(df['A'].count()).tolist() # 存储了各个分组的大小

    for count in separate_group_counts:
    sorted_group_list.append(df[itr:itr + count].copy()) # 这里的 copy 不要可能会省点内存,不过有点危险
    itr += count

    楼下那位的做法好像也挺不错的,比我的简洁一点
    thinszx
        5
    thinszx  
    OP
       2020-03-19 12:33:32 +08:00 via Android
    @wittyfans 啊,是的,学习到了!原来有这么简洁方法,谢谢()
    wittyfans
        6
    wittyfans  
       2020-03-19 12:42:59 +08:00   1
    @thinszx 不客气,我也是在别人那里学到的,再分享你一些我常用的 groupy 的例子:


    # 显示所有组,后面是值的 index'
    df_gp = dff.groupby('name')
    df_gp.groups

    # 拿到某个 group 的值
    df_gp.get_group('bryan chen')

    # 根据名字的第一部分来 group
    dff.groupby(dff.name.str.split(' ').str[0]).size()

    # 根据名字中是否有 wittyfans 来 group
    dff.groupby(dff.name.apply(lambda x: 'wittyfans' in x)).size()

    # 对 groupby 的值,平均分段统计后汇总数量
    df_mean.groupby(
    pd.qcut(
    x=df_mean['AUSTRALIA - AUSTRALIAN DOLLAR/US$'],
    q=3,labels=['low','mid','hight']
    )
    ).size()

    # 对一列值分组
    pd.qcut(
    x=df_mean['AUSTRALIA - AUSTRALIAN DOLLAR/US$'],
    q=3,labels=['low','mid','hight']
    )

    # 按照自定义的值来分组
    df_mean.groupby(
    pd.cut(
    df_mean['CHINA - YUAN/US$'],
    [6.0,6.5,7.0,7.5,8.0,8.5]
    )).size()

    # 根据指定日期列来 resmaple,再做分组统计
    dff.groupby(
    pd.Grouper(
    key='start',
    freq='d'
    )
    ).size()

    # 根据指定日期列来 resmaple,再 apply 你的函数
    df.reset_index().groupby(
    pd.Grouper(
    key='Time Serie',
    freq='5Y'
    )
    )['CHINA - YUAN/US$'].apply(np.mean)

    # 根据指定日志来 resample,再结合多个聚合函数
    df.reset_index().groupby(
    pd.Grouper(
    key='Time Serie',
    freq='5Y'
    )
    ).agg(
    {
    'HONG KONG - HONG KONG DOLLAR/US$':'mean',
    'CHINA - YUAN/US$':['median','std','mean']
    })

    # 偶尔 groupy 重命名很麻烦,可以这样写:(pandas>=2.5)
    aggregation = {
    'china': ('CHINA - YUAN/US$','mean'),
    'hk': ('HONG KONG - HONG KONG DOLLAR/US$','mean')
    }

    df.groupby('region').agg(**aggregation)

    # groupby 返回的是 reduce 的数据,如果要根据某个分类分组,然后再计算单个值占该组的占比,可以这样写
    df['%'] = df.groupby('location')['name'].transform(lambda x:x/sum(x))

    # 使用 filter 配合 groupby 选择数据
    df.groupby('location').filter(
    lambda x: (x['worklog'] * x['ticket_num']).sum() > 20000
    )

    df.groupby('location').filter(
    lambda x: (x['worklog'] * x['ticket_num']).mean() > .3
    )

    上面提到的一些列名,有的来自 kaggle 上的汇率数据,有的是我自己平时处理的数据,不理解的自己实际操作下就懂了。
    thinszx
        7
    thinszx  
    OP
       2020-03-19 12:54:10 +08:00
    @wittyfans 谢谢,真的很有帮助!!!
    jyyx
        8
    jyyx  
       2020-03-19 14:37:54 +08:00
    @thinszx 我的就是你想要的吧, 本来 groupby 就可以切割了
    for key, df_sub in df.groupby('A'):
    print(key, df_sub)
    thinszx
        9
    thinszx  
    OP
       2020-03-19 20:26:27 +08:00
    @jyyx 得到的数据没有问题,但是数据类型不太对,我想直接得到 dataframe 类型的数据,你的方法得到的是 list 型的,如果要得到 dataframe 型的数据还需要再转一次,可能我表达的不太清楚,MisterLee 的方法就是我想要的了,直接得到了 dataframe 格式的分组
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3478 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 30ms UTC 04:42 PVG 12:42 LAX 21:42 JFK 00:42
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86