三门问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
iamdaguduizhang
V2EX    问与答

三门问题

  •  
  •   iamdaguduizhang 2019-08-17 10:19:49 +08:00 3078 次点击
    这是一个创建于 2247 天前的主题,其中的信息可能已经有所发展或是发生改变。

    在知乎上看到一个有意思的问题,评论里各种各样的思维方式也值得思考。所以我想来看一看 v 站的大佬的想法 问题如下:

    假设你在参加一个春节抽奖游戏,主持人在三个红包里面分别放了 1 块钱、1 块钱和 1000 块钱。你选中哪一个,你就可以领到对应的钱。当你选定一个红包之后,主持人独自翻开剩下两个红包,然后将有一块钱的红包给你看。

    此时,给你一次机会选另外一个红包。

    25 条回复    2019-08-27 11:45:22 +08:00
    iamdaguduizhang
        1
    iamdaguduizhang  
    OP
       2019-08-17 10:20:45 +08:00
    你是换还是不换呢~~
    ryd994
        2
    ryd994  
       2019-08-17 10:24:50 +08:00 via Android   1
    这个问题去维基百科搜一下就有
    要点在于,主持人的行为不是随机的,他一定会打开没有钱的那扇门。所以提供了额外信息。不能再按照纯随机概率来计算了。
    ipwx
        3
    ipwx  
       2019-08-17 10:24:50 +08:00   2
    p(第一次选中 1000 元)=1/3
    p(第一次没有选中 1000 元)=1-p(第一次选中 1000 元)=2/3
    p(最后得到 1000 元) = p(最后得到 1000 元|第一次选中 1000 元) * p(第一次选中 1000 元) + p(最后得到 1000 元|第一次没有选中 1000 元) * p(第一次没有选中 1000 元) = p(最后得到 1000 元|第一次选中 1000 元) / 3 + 2 * p(最后得到 1000 元|第一次没有选中 1000 元) / 3

    如果换:

    p(最后得到 1000 元|第一次选中 1000 元) = 0
    p(最后得到 1000 元|第一次没有选中 1000 元) = 1
    p(最后得到 1000 元) = 2/3

    如果不换:

    p(最后得到 1000 元|第一次选中 1000 元) = 1
    p(最后得到 1000 元|第一次没有选中 1000 元) = 0
    p(最后得到 1000 元) = 1/3

    解答完毕。
    ipwx
        4
    ipwx  
       2019-08-17 10:25:32 +08:00
    @ryd994 就是纯随机概率问题,只不过很多人都不按照公式一步一步去算,而是凭直觉口算了一个。

    严格算法见我上面一楼。
    NVDA
        5
    NVDA  
       2019-08-17 10:27:51 +08:00
    这不就是条件概率么...
    iamdaguduizhang
        6
    iamdaguduizhang  
    OP
       2019-08-17 10:29:04 +08:00
    @ryd994 但是我觉得主持人的行为也不能改变第一次已经发生的事情啊,就比如第一次拿到的是 1 的概率
    iamdaguduizhang
        7
    iamdaguduizhang  
    OP
       2019-08-17 10:29:15 +08:00
    @ipwx cool
    ryd994
        8
    ryd994  
       2019-08-17 10:29:52 +08:00 via Android
    @ipwx 不是的,如果主持人也不知道哪个门里有钱,而是随机排除一个,那就不会影响剩下的概率。
    ryd994
        9
    ryd994  
       2019-08-17 10:31:50 +08:00 via Android
    @iamdaguduizhang 主持人的行为没有改变你手里的那个。但是因为他打开的一定是两扇门中没有钱的那一个。实际上是帮你排除了一个错误选项。影响了另一个没选中的门的概率
    ipwx
        10
    ipwx  
       2019-08-17 10:33:00 +08:00
    @ryd994 题面不是随机排除一个。
    ryd994
        11
    ryd994  
       2019-08-17 10:38:47 +08:00 via Android   1
    @ipwx 所以我说理解的要点在于注意到主持人的行为不是随机的。数学上解题不难,但很多人无法理解,认为这反直觉。那就可以这样向他们解释。
    niubee1
        12
    niubee1  
       2019-08-17 10:41:02 +08:00
    换, 概率学决定的,但是, 中不中

    那就是命
    niubee1
        13
    niubee1  
       2019-08-17 10:41:51 +08:00
    其实真实的电视节目里,其实都成了“ 这是几匹马 ” 的问题
    polo3584
        14
    polo3584  
       2019-08-17 11:33:40 +08:00
    换,中不中就另说了
    zhangchao12cn
        15
    zhangchao12cn  
       2019-08-17 12:20:20 +08:00 via iPhone
    纯理性的看待,如果主持人的行为 100%被触发,那么改变与否都不会影响中奖的概率。
    不理性的看待,9 成以上的人都会选择更换。
    V2 程序员的看待,录制以往 100 期的节目,通过机器学习主持人面部表情与声音的细微差别,找出特征值来判断更换与否。
    资本家的看待,在现场开盘口和观众风险对冲
    CastleBUPT
        16
    CastleBUPT  
       2019-08-17 14:33:51 +08:00
    3L 已经解答得非常清楚了,此帖终结
    iceheart
        17
    iceheart  
       2019-08-17 15:14:56 +08:00 via Android
    说的简单点
    中途更换选择 == 3 选 2
    你只是排除了第一次选的那个
    HongJay
        18
    HongJay  
       2019-08-17 15:27:39 +08:00
    经济学中把这种现象称为概率偏见。

    行为经济学家把人类自以为是的概率称之为:心理概率;心理概率和客观概率的不吻合,就叫做偏见概率。
    msg7086
        19
    msg7086  
       2019-08-17 16:18:26 +08:00 via Android
    @iamdaguduizhang 第一次中标的几率是三分之一,这是基于完全随机的选择。主持人开门则是完全固定的选择。所以主持人开门会影响第二次选择的概率。
    如果第一次选择没中,重选时如果换门这是 50%中,但是因为主持人知道答案,所以换门变成了百分之百中。换门的概率差就在于此。

    换个更简单的说法,因为主持人打开的门你不会再选到,所以换门的收益更高。
    bridgeca0
        20
    bridgeca0  
       2019-08-17 17:05:29 +08:00
    概率问题里面有些比较有意思的,我想起来看过的另外一个问题:两个人甲乙各持一枚硬币,每次可以自由选择出正或反,一正一反或者一反一正甲赢 2 块钱,两个正乙赢 3 块,两个反乙赢 1 块,这个游戏公平吗,答案参见李永乐老师的股票视频
    smdbh
        21
    smdbh  
       2019-08-17 17:08:18 +08:00
    不是有正确答案了么
    webee
        22
    webee  
       2019-08-17 23:50:45 +08:00
    3 楼计算是正确的。
    也可以换的方式思考:
    P(不换选中概率)=P(3 选 1 选中概率)=1/3

    由于主持人在剩余 2 个中排除掉一个
    P(换选中概率)=P(3 选 2 选中概率)*P(1 选 1 选中概率)=2/3*1=2/3

    推广到 n 个则是:
    P(不换选中概率)=1/n
    P(换选中概率)=(n-1)/n*1/(n-2)=(n-1)/n/(n-2)

    n>=3 时,P(换选中概率)>P(不换选中概率)
    laminux29
        23
    laminux29  
       2019-08-18 22:03:31 +08:00
    跑了一百万次,模拟了一下:
    不换门概率:33.35%
    换门概率:66.65%
    behanga
        24
    behanga  
       2019-08-19 14:54:14 +08:00
    搜索 李永乐 三门问题 你就知道了
    iamdaguduizhang
        25
    iamdaguduizhang  
    OP
       2019-08-27 11:45:22 +08:00
    1
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1564 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 16:31 PVG 00:31 LAX 09:31 JFK 12:31
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86