怎样把 pandas 结构的数据用 sklearn 进行归一化? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
acone2003
V2EX    Python

怎样把 pandas 结构的数据用 sklearn 进行归一化?

  •  
  •   acone2003 2019-03-03 06:58:08 +08:00 3515 次点击
    这是一个创建于 2415 天前的主题,其中的信息可能已经有所发展或是发生改变。
    我用如下的语句:

    print( train_values )
    scaler_value = sklearn.preprocessing.StandardScaler()
    train_values = train_values.reshape( -1, 1 )
    train_values = scaler_value.fit_transform( train_values )
    print( train_values )

    在没归一化之前,第一个 print()的显示结果为:
    0 3.611735
    1 3.061345
    2 1.336066
    3 4.472938
    4 0.950000
    5 1.005221
    6 -1.695007
    7 -1.863722
    8 9.722779
    9 -1.898245
    10 -2.265924
    11 -2.251220
    12 -0.926588
    13 0.601857
    14 -2.401116
    15 2.804064
    16 0.063416
    17 -2.446691
    18 -2.990583
    19 -1.146860
    20 0.988730
    21 0.401565
    22 -0.364725
    23 4.671857
    24 1.135132
    25 -0.300000
    26 5.003030
    27 -1.209091
    28 3.397024
    29 2.683139

    59584 0.561141
    59585 0.425851
    59586 2.551711
    59587 0.770950
    59588 1.429819
    59589 -0.038630
    59590 -0.160140
    59591 -2.024138
    59592 0.987554
    59593 2.120701
    59594 2.076600
    59595 0.173934
    59596 0.547458
    59597 0.775269
    59598 0.871875
    59599 0.215169
    59600 0.069213
    59601 -0.184726
    59602 1.211879
    59603 -1.038636
    59604 1.261280
    59605 1.851639
    59606 0.537404
    59607 2.216779
    59608 -0.226362
    59609 4.037632
    59610 -2.224026
    59611 -10.302545
    59612 -1.040319
    59613 -3.158932
    Name: RealValues, Length: 59614, dtype: float64

    归一化之后,第二个 print()的显示结果为:
    [[ 0.67192266]
    [ 0.57905474]
    [ 0.28794649]
    ...
    [-1.67584932]
    [-0.1130236 ]
    [-0.47049954]]

    我应该怎样才能把归一化后的数据结构变回原来的样式?
    2 条回复    2019-03-03 10:27:22 +08:00
    zilaijuan
        1
    zilaijuan  
       2019-03-03 08:13:09 +08:00 via Android
    pd.Dataframe(归一化后[0,:])

    ??
    acone2003
        2
    acone2003  
    OP
       2019-03-03 10:27:22 +08:00
    谢谢 @zilaijuan,OK!

    scaler_value = sklearn.preprocessing.StandardScaler()
    train_values = train_values.reshape( -1, 1 )
    train_values = scaler_value.fit_transform( train_values )
    train_values = train_values.reshape( 1, -1 )
    train_values = pandas.DataFrame( train_values[0,:] )
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     931 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 41ms UTC 18:44 PVG 02:44 LAX 11:44 JFK 14:44
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86