word2vec+LSTM 情感识别,帮忙看看哪出了问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
KarlRixon
V2EX    TensorFlow

word2vec+LSTM 情感识别,帮忙看看哪出了问题

  •  
  •   KarlRixon 2019-02-24 10:42:10 +08:00 7166 次点击
    这是一个创建于 2482 天前的主题,其中的信息可能已经有所发展或是发生改变。

    数据来源是京东新款手机的评论和打分,目前收集到 2500 条数据,但打分小于 5 分的只有不到 40 条

    训练模型层次是:嵌入层-》 LSTM-》 Dense-》 Dense-》输出层 嵌入层的初始数据为 word2vec 训练的词向量 输入的训练数据为词索引,标记为打分

    部分代码如下:

    def main(): x_train = pad_seq() y_train = star() x_train, y_train, x_test, y_test = set_data(x_train, y_train) model = Sequential() model.add(Embedding(input_dim=input_dim+1, output_dim=output_dim, input_length=k, embeddings_initializer=my_init)) model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2, activation='sigmoid')) model.add(Dense(256, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(1,activation='sigmoid')) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(x_train, y_train, batch_size=batch_size, epochs=15) score, acc = model.evaluate(x_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc) 

    然而训练结果是这样的。。。

    Epoch 15/15 32/2015 [..............................] - ETA: 0s - loss: -63.2713 - acc: 0.0000e+00 160/2015 [=>............................] - ETA: 0s - loss: -63.4706 - acc: 0.0000e+00 288/2015 [===>..........................] - ETA: 0s - loss: -63.5481 - acc: 0.0000e+00 384/2015 [====>.........................] - ETA: 0s - loss: -63.2713 - acc: 0.0026 480/2015 [======>.......................] - ETA: 0s - loss: -63.3046 - acc: 0.0021 608/2015 [========>.....................] - ETA: 0s - loss: -63.4024 - acc: 0.0016 736/2015 [=========>....................] - ETA: 0s - loss: -63.3796 - acc: 0.0027 864/2015 [===========>..................] - ETA: 0s - loss: -63.3821 - acc: 0.0023 992/2015 [=============>................] - ETA: 0s - loss: -63.3838 - acc: 0.0020 1120/2015 [===============>..............] - ETA: 0s - loss: -63.3852 - acc: 0.0018 1248/2015 [=================>............] - ETA: 0s - loss: -63.3991 - acc: 0.0016 1376/2015 [===================>..........] - ETA: 0s - loss: -63.4104 - acc: 0.0015 1504/2015 [=====================>........] - ETA: 0s - loss: -63.3879 - acc: 0.0020 1632/2015 [=======================>......] - ETA: 0s - loss: -63.4081 - acc: 0.0018 1760/2015 [=========================>....] - ETA: 0s - loss: -63.4344 - acc: 0.0017 1888/2015 [===========================>..] - ETA: 0s - loss: -63.4233 - acc: 0.0021 2015/2015 [==============================] - 1s 470us/step - loss: -63.4214 - acc: 0.0020 32/504 [>.............................] - ETA: 2s 504/504 [==============================] - 0s 412us/step Test score: -63.769539061046785 Test accuracy: 0.0 Process finished with exit code 0 

    model 如下:

    _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_1 (Embedding) (None, 20, 50) 49350 _________________________________________________________________ lstm_1 (LSTM) (None, 128) 91648 _________________________________________________________________ dense_1 (Dense) (None, 256) 33024 _________________________________________________________________ dense_2 (Dense) (None, 128) 32896 _________________________________________________________________ dense_3 (Dense) (None, 1) 129 ================================================================= Total params: 207,047 Trainable params: 207,047 Non-trainable params: 0 _________________________________________________________________ 
    10 条回复    2019-02-25 18:21:45 +08:00
    wz74666291
        1
    wz74666291  
       2019-02-24 12:35:28 +08:00 via iPhone
    你试着把 fit 的 step 减小一些试试,比如 10e-5
    hanbing135
        2
    hanbing135  
       2019-02-24 14:17:12 +08:00 via Android
    完全看不懂
    aREMbosAl
        3
    aREMbosAl  
       2019-02-24 14:22:51 +08:00
    label 是打分?但是用的 loss 是二分类的
    ayase252
        4
    ayase252  
       2019-02-24 15:19:10 +08:00
    loss 为负?这违反代价函数定义了吧。
    仔细考虑一下输出是什么
    douglas1997
        5
    douglas1997  
       2019-02-24 15:52:42 +08:00
    我就想知道 Epoch 15 的时候后面的 Acc 指标为什么一直是 0.001~0.002.... 压根就没有优化好。
    zzj0311
        6
    zzj0311  
       2019-02-24 16:11:39 +08:00 via Android
    loss 是负的是什么鬼。。这拿啥写的,sklearn ?
    zzj0311
        7
    zzj0311  
       2019-02-24 16:14:48 +08:00 via Android
    所以你这个输入是评分输出是一个二分类?那不可能对的嘛
    KarlRixon
        8
    KarlRixon  
    OP
       2019-02-25 18:18:20 +08:00
    @zzj0311 用的 Keras
    KarlRixon
        9
    KarlRixon  
    OP
       2019-02-25 18:20:27 +08:00
    @zzj0311 我想起了,1-3 分是负面评价,4-5 分是正面评价
    KarlRixon
        10
    KarlRixon  
    OP
       2019-02-25 18:21:45 +08:00
    @ayase252 1-3 分是负面评价,4-5 分是正面评价,可能是我少了这步处理,直接把打分喂入了
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5473 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 29ms UTC 01:47 PVG 09:47 LAX 17:47 JFK 20:47
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86