机器学习分享反向传播算法推导 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
请不要在回答技术问题时复制粘贴 AI 生成的内容
anita233
V2EX    程序员

机器学习分享反向传播算法推导

  •  
  •   anita233 2019-01-25 17:22:46 +08:00 1678 次点击
    这是一个创建于 2526 天前的主题,其中的信息可能已经有所发展或是发生改变。

    反向传播(英语:Backpropagation,缩写为 BP )是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。

    很多同学在学习深度神经网络的时候,对反向传播的相关细节表示难以理解,国外有一篇技术博客,用例子进行了非常清晰的推导。我们对此进行了汉化,并提供了相关的代码。有兴趣的同学快来看看吧。

    相关代码请见 http://www.momodel.cn:8899/#/explore/5b84e0098fe30b727acaa360?type=app

    原文地址 https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

    假设,你有这样一个网络层

    在这里插入图片描述 现在对他们赋上初值,如下图:

    在这里插入图片描述

    前向传播过程

    1. 输入层---->隐含层:

    输入层-隐含层

    2. 隐藏层---->输出层:

    隐藏层-输出层

    反向传播过程

    接下来,就可以进行反向传播的计算了

    1. 计算总误差

    计算总误差

    2. 隐含层---->输出层的权值更新:

    权职更新 下面的图可以更直观的看清楚误差是怎样反向传播的

    我们分别计算每个式子的值: 三个算式 最后三者相乘

    三者相乘 看看上面的公式,我们发现: 公式 表达式

    3.隐含层---->隐含层的权值更新:

    在这里插入图片描述 同理,计算出 在这里插入图片描述 两者相加,得到总值

    在这里插入图片描述 在这里插入图片描述

    最后,三者相乘 在这里插入图片描述 在这里插入图片描述

    这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代.

    完整代码( PC 端查看): http://www.momodel.cn:8899/#/explore/5b84e0098fe30b727acaa360?type=app

    Mo (网址:momodel.cn )是一个支持 Python 的人工智能建模平台,能帮助你快速开发训练并部署 AI 应用。期待你的加入。

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5169 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 09:14 PVG 17:14 LAX 01:14 JFK 04:14
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86