调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
1722332572
V2EX    Python

调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数

  •  
  •   1722332572 2018-08-03 12:24:45 +08:00 8110 次点击
    这是一个创建于 2626 天前的主题,其中的信息可能已经有所发展或是发生改变。
    Auto-Keras 是一个开源的自动机器学习库。Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习。Auto-Keras 提供了一系列函数来自动搜索深度学习模型的网络和超参数。

    安装:

    pip install autokeras

    样例:

    import autokeras as ak
    clf = ak.ImageClassifier()
    clf.fit(x_train, y_train)
    results = clf.predict(x_test)

    官方网站: http://autokeras.com/
    开源项目: https://github.com/jhfjhfj1/autokeras

    Auto-Keras is an open source software library for automated machine learning (AutoML). The ultimate goal of AutoML is to allow domain experts with limited data science or machine learning background easily accessible to deep learning models. Auto-Keras provides functions to automatically search for architecture and hyperparameters of deep learning models.

    翻译: http://www.tf86.com/2018/08/03/auto-keras/
    13 条回复    2018-08-08 15:12:59 +08:00
    bwael
        1
    bwael  
       2018-08-03 12:49:14 +08:00
    抢个沙发试试。auto-keras,有点可怕。
    geekcorn
        2
    geekcorn  
       2018-08-03 12:50:06 +08:00 via iPhone
    哇&&&)
    sangleft
        3
    sangleft  
       2018-0803 13:11:07 +08:00 via Android
    等会就试试…
    ddzzhen
        4
    ddzzhen  
       2018-08-03 15:09:43 +08:00 via Android
    看起来有点牛批,sklearn 的翻版?
    xxxy
        5
    xxxy  
       2018-08-03 15:28:35 +08:00   1
    sklearn 不是有个 gridSearch?跟那个有什么区别?
    owenliang
        6
    owenliang  
       2018-08-03 16:52:56 +08:00 via Android
    深度学习帮码农挑选优质特征
    thedog
        7
    thedog  
       2018-08-03 16:57:38 +08:00 via Android
    @xxxy 神经网络超参数太多,不会用网格搜索这种遍历调参的。调参的时候蛮多 trick 的
    OLDPAN
        8
    OLDPAN  
       2018-08-03 17:15:05 +08:00
    之前是自动调参数,现在是自动调网络
    1722332572
        9
    1722332572  
    OP
       2018-08-03 17:43:41 +08:00
    @xxxy 看文档,这个模型也会调。
    takato
        10
    takato  
       2018-08-03 17:45:00 +08:00
    本质是个 NAS 吧。
    eastrd
       11
    eastrd  
       2018-08-04 07:56:25 +08:00 via Android
    不是已经有 hpot 了吗?
    northisland
        12
    northisland  
       2018-08-04 11:56:25 +08:00
    厉害了!
    虽然 tensorflow 很难用,但为了这些周边,还是值得搞 TF 的~

    First, each dataset is split by60-20-20 into training, validation and testing set.
    Second, **run the method for 12 hours** on a single GPU (NVIDIA GeForce GTX 1080Ti) on the training and validation set.
    Third, the output architecture is trained with both training and validation set.
    Fourth, the testing set is used to evaluate the trained architecture

    最近经常见 200 块 gpu,训练个把月的 RL 文章,这方法简直是一股清流
    1722332572
        13
    1722332572  
    OP
       2018-08-08 15:12:59 +08:00
    @northisland 调参侠的福音,还顺便调网络结构,美滋滋。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1012 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 23ms UTC 18:38 PVG 02:38 LAX 11:38 JFK 14:38
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86