请问运行完这个程序大概需要花多长时间? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
acone2003
V2EX    Python

请问运行完这个程序大概需要花多长时间?

  •  
  •   acone2003 2018 年 5 月 23 日 2119 次点击
    这是一个创建于 2809 天前的主题,其中的信息可能已经有所发展或是发生改变。
    本人准备学习 python 和机器学习,刚刚搭建好环境,从书上抄了一段程序试验一下,无奈运行了两天还没出结果。CPU 占用率一直接近 100%。请各位帮忙看一下是我的程序有问题呢还是真的没运行完?大概需要多少时间?我的配置是 E5-2650,8 核 16 线程,主频好像是 2.0G ,8G 内存。
    程序如下:
    # Load libraries
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_digits
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import validation_curve

    # Load data
    digits = load_digits()

    # Create feature matrix and target vector
    features, target = digits.data, digits.target

    # Create range of values for parameter
    #param_range = np.arange(1, 250, 2)
    param_range = np.arange(1, 250, 25)

    # Calculate accuracy on training and test set using range of parameter values
    train_scores, test_scores = validation_curve(
    # Classifier
    RandomForestClassifier(),
    # Feature matrix
    features,
    # Target vector
    target,
    # Hyperparameter to examine
    param_name="n_estimators",
    # Range of hyperparameter's values
    param_range=param_range,
    # Number of folds
    cv=3,
    # Performance metric
    scoring="accuracy",
    # Use all computer cores
    n_jobs=-1)

    # Calculate mean and standard deviation for training set scores
    train_mean = np.mean(train_scores, axis=1)
    train_std = np.std(train_scores, axis=1)

    # Calculate mean and standard deviation for test set scores
    test_mean = np.mean(test_scores, axis=1)
    test_std = np.std(test_scores, axis=1)

    # Plot mean accuracy scores for training and test sets
    plt.plot(param_range, train_mean, label="Training score", color="black")
    plt.plot(param_range, test_mean, label="Cross-validation score",
    color="dimgrey")

    # Plot accurancy bands for training and test sets
    plt.fill_between(param_range, train_mean - train_std,
    train_mean + train_std, color="gray")
    plt.fill_between(param_range, test_mean - test_std,
    test_mean + test_std, color="gainsboro")

    # Create plot
    plt.title("Validation Curve With Random Forest")
    plt.xlabel("Number Of Trees")
    plt.ylabel("Accuracy Score")
    plt.tight_layout()

    plt.legend(loc="best")
    plt.show()

    程序实际上就一个函数 validation_curve,就是看一下不同的超参数对随机森林决策精度的影响。
    princelai
        1
    princelai  
       2018 年 5 月 23 日
    正好我有环境,帮你试了下,,源代码一点没动,2 秒出结果。。。。。。你是不是 python 环境有问题?
    princlai
        2
    princelai  
       2018 年 5 月 23 日
    贴出我的环境,供你参考

    pd.show_versions()

    INSTALLED VERSIONS
    ------------------
    commit: None
    python: 3.6.5.final.0
    python-bits: 64
    OS: Linux
    OS-release: 4.14.42-1-MANJARO
    machine: x86_64
    processor:
    byteorder: little
    LC_ALL: None
    LANG: zh_CN.UTF-8
    LOCALE: zh_CN.UTF-8

    pandas: 0.23.0
    pytest: 3.5.1
    pip: 10.0.1
    setuptools: 39.2.0
    Cython: 0.28.2
    numpy: 1.14.3
    scipy: 1.1.0
    pyarrow: None
    xarray: None
    IPython: 6.4.0
    sphinx: 1.7.4
    patsy: 0.5.0
    dateutil: 2.7.3
    pytz: 2018.4
    blosc: None
    bottleneck: 1.2.1
    tables: 3.4.3
    numexpr: 2.6.5
    feather: None
    matplotlib: 2.2.2
    openpyxl: 2.5.3
    xlrd: 1.1.0
    xlwt: 1.3.0
    xlsxwriter: 1.0.4
    lxml: 4.2.1
    bs4: 4.6.0
    html5lib: 1.0.1
    sqlalchemy: 1.2.7
    pymysql: None
    psycopg2: None
    jinja2: 2.10
    s3fs: None
    fastparquet: None
    pandas_gbq: None
    pandas_datareader: None
    acone2003
        3
    acone2003  
    OP
       2018 年 5 月 23 日
    多谢 princelai,我找找原因。
    John60676
        4
    John60676  
       2018 年 5 月 23 日
    macbook pro 2015 8G,也是秒出结果
    neosfung
        5
    neosfung  
       2018 年 5 月 23 日 via iPhone
    load_digits 是否会下载数据集呢
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     4496 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 24ms UTC 08:50 PVG 16:50 LAX 00:50 JFK 03:50
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86