DeepMoji:机器学习模型分析情绪, 情感 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
fendouai_com
V2EX    机器学习

DeepMoji:机器学习模型分析情绪, 情感

  •  
  •   fendouai_com 2017-10-05 22:36:22 +08:00 2520 次点击
    这是一个创建于 2929 天前的主题,其中的信息可能已经有所发展或是发生改变。

    DeepMoji 是一个模型,接受 12 亿个带有表情的推文,以了解语言如何表达情绪。 通过转移学习,该模型可以在许多情感相关的文本建模任务上获得最先进的表现。

    http://deepmoji.mit.edu 尝试我们的在线演示! 有关详细信息,请参阅论文,博文或常见问题。

    项目地址: https://github.com/bfelbo/DeepMoji

    机器学习: http://www.tensorflownews.com

    DeepMoji is a model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.

    Try our online demo at http://deepmoji.mit.edu! See the paper, blog post or FAQ for more details.

    Overview deepmoji/ contains all the underlying code needed to convert a dataset to our vocabulary and use our model. examples/ contains short code snippets showing how to convert a dataset to our vocabulary, load up the model and run it on that dataset. scripts/ contains code for processing and analysing datasets to reproduce results in the paper. model/ contains the pretrained model and vocabulary. data/ contains raw and processed datasets that we include in this repository for testing. tests/ contains unit tests for the codebase. To start out with, have a look inside the examples/ directory. See score_texts_emojis.py for how to use DeepMoji to extract emoji predictions, encode_texts.py for how to convert text into 2304-dimensional emotional feature vectors or finetune_youtube_last.py for how to use the model for transfer learning on a new dataset.

    Please consider citing our paper if you use our model or code (see below for citation).

    目前尚无回复
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2431 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 22ms UTC 15:33 PVG 23:33 LAX 08:33 JFK 11:33
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86