TensorFlow 训练好模型参数的保存和恢复代码 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
fendouai_com
V2EX    TensorFlow

TensorFlow 训练好模型参数的保存和恢复代码

  •  
  •   fendouai_com 2017-07-16 19:48:49 +08:00 3312 次点击
    这是一个创建于 3070 天前的主题,其中的信息可能已经有所发展或是发生改变。

    TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧。

    TensorFlow 提供了 Saver 类,可以进行保存和恢复。下面是 TensorFlow-Examples 项目中提供的保存和恢复代码。

    Save and Restore a model using TensorFlow. This example is using the MNIST database of handwritten digits ( http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf # Parameters learning_rate = 0.001 batch_size = 100 display_step = 1 model_path = "/tmp/model.ckpt" # Network Parameters n_hidden_1 = 256 # 1st layer number of features n_hidden_2 = 256 # 2nd layer number of features n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) # tf Graph input x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # Create model def multilayer_perceptron(x, weights, biases): # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) # Hidden layer with RELU activation layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) # Output layer with linear activation out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # 'Saver' op to save and restore all the variables saver = tf.train.Saver() # Running first session print("Starting 1st session...") with tf.Session() as sess: # Initialize variables sess.run(init) # Training cycle for epoch in range(3): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", \ "{:.9f}".format(avg_cost)) print("First Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})) # Save model weights to disk save_path = saver.save(sess, model_path) print("Model saved in file: %s" % save_path) # Running a new session print("Starting 2nd session...") with tf.Session() as sess: # Initialize variables sess.run(init) # Restore model weights from previously saved model saver.restore(sess, model_path) print("Model restored from file: %s" % save_path) # Resume training for epoch in range(7): avg_cost = 0. total_batch = int(mnist.train.num_examples / batch_size) # Loop over all batches for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch + 1), "cost=", \ "{:.9f}".format(avg_cost)) print("Second Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print("Accuracy:", accuracy.eval( {x: mnist.test.images, y: mnist.test.labels})) 

    博客: http://www.tensorflownews.com/2017/07/16/save-and-restore-a-model-using-tensorflow/

    5 条回复    2017-07-16 21:01:18 +08:00
    snnn
        1
    snnn  
       2017-07-16 20:22:42 +08:00   1
    啥乱七八糟的啊……
    init 和 restore 二选一就够了
    fendouai_com
        2
    fendouai_com  
    OP
       2017-07-16 20:38:10 +08:00
    @snnn init 是初始化,restore 是恢复保存的数据,这两个功能不一样吧?我也刚学,多谢大佬指教。
    snnn
        3
    snnn  
       2017-07-16 20:43:17 +08:00   1
    @fendouai_com 一般来说,执行了 init 就没必要执行 restore,执行了 restore 就没必要执行 init。它们都是为了初始化变量用的。
    fendouai_com
        4
    fendouai_com  
    OP
       2017-07-16 21:00:39 +08:00
    @snnn 多谢大佬指教,刚才修改了一下,确实是重复了。
    fendouai_com
        5
    fendouai_com  
    OP
       2017-07-16 21:01:18 +08:00
    # Running a new session
    print("Starting 2nd session...")
    with tf.Session() as sess:
    # Initialize variables
    # 下面这个 init 可以注释掉
    sess.run(init)
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3272 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 27ms UTC 04:58 PVG 12:58 LAX 20:58 JFK 23:58
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86