问一个 numpy pandas 相关的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
guolingbing
V2EX    Python

问一个 numpy pandas 相关的问题

  •  
  •   guolingbing 2017-05-22 08:16:57 +08:00 via Android 3015 次点击
    这是一个创建于 3066 天前的主题,其中的信息可能已经有所发展或是发生改变。
    求大佬们指教

    我有两个矩阵
    a = [[1,3,4],[2,5,3],[2,4,6],[6,5,3]]
    b = [[2,4,5],[2,4,6],[1,3,4]]

    a 和 b 长度不等,但里面的向量维数都是 3,
    我现在有一个需求:
    找出 b 中 a 包含的向量,也就是[2,4,6][1,3,4],修改这些向量,直到 b 中不含有 a 包含的向量

    现在的问题是 a 和 b 都很大,如果用遍历的方法一个一个判断效率比较低,各位大佬有没有什么好办法,直接可以选取 b 中 a 包含的向量的方法呢?
    10 条回复    2017-05-22 15:41:11 +08:00
    EmdeBoas
        1
    EmdeBoas  
       2017-05-22 08:48:13 +08:00 via Android   1
    不直接选取可以考虑这样做:用一个乘数 hash 把 a 映射到一个 set 里面,比如 hash(x)=3x[0]+33x[1]+333x[2],然后去同样遍历 b,放不进 set 就说明存在了,按 index 去掉就好了,复杂度是 n,不过这样做 hash.函数选的不好可能就会误报……直接选取的想法也有,不过现在手边没电脑没法验证……中午回去了试试
    imn1
        2
    imn1  
       2017-05-22 08:49:49 +08:00   1
    大也是内存问题
    你这个需求是整行相同,实际上就是一维,用列表表达式 in 就可以了
    df 格式的话,用 df.isin
    guolingbing
        3
    guolingbing  
    OP
       2017-05-22 08:53:06 +08:00 via Android
    @EmdeBoas 其实我想做的是 用 numpy 或者 pandas 的矩阵方法直接选取相交的向量,如果要遍历的话其实 numpy 内置了比较方法,不用哈希也行,直接
    for v in b:
    if v in a :

    就可以了
    guolingbing
        4
    guolingbing  
    OP
       2017-05-22 08:57:14 +08:00 via Android
    @imn1 感谢,我马上去试试,isin 好像可行
    princelai
        5
    princelai  
       2017-05-22 12:14:05 +08:00   1
    我自己随便写了个,思路就是 hash 值变为 index,然后用 pandas 的 index 对齐

    import pandas as pd
    import random
    import itertools

    a3 = pd.Series(random.sample(list(itertools.permutations(range(10),3)),100))
    a = a3.apply(lambda x:list(x))
    a.index = [hash(tuple(i)) for i in a.values]
    a= pd.DataFrame(a)
    a.columns = ['value_a']
    a['idx_a'] = range(len(a))

    b3 = pd.Series(random.sample(list(itertools.combinations(range(10),3)),50))
    b = b3.apply(lambda x:list(x))
    b.index = [hash(tuple(i)) for i in b.values]
    b= pd.DataFrame(b)
    b.columns = ['value_b']
    b['idx_b'] = range(len(b))

    b.iloc[pd.concat([a,b],axis=1,join='inner').idx_b.values]
    guolingbing
        6
    guolingbing  
    OP
       2017-05-22 13:21:56 +08:00
    @princelai 赞,我同时也在 stackoverflow 上问了这个问题,感觉这个方法更简洁,我之前也是想到先把一个向量转换为 tuple,这样就能 hash 了,但操作有些复杂
    http://stackoverflow.com/questions/44103188/how-can-i-select-one-matrix-vectors-which-in-another-matrix
    khowarizmi
        7
    khowarizmi  
       2017-05-22 14:20:34 +08:00
    @guolingbing 在 stackoverflow 上的方法 ```np.in1d``` 用的就是嵌套遍历 a, b 两个数组,算法复杂度在 O(nm),数据量上去会有问题。
    guolingbing
        8
    guolingbing  
    OP
       2017-05-22 15:00:50 +08:00
    @khowarizmi 实际上 np.in1d 我用起来很快的,要比遍历快的多,我现在用答案上提供的 in2d 的方法,大概两个 50W 的向量几秒就完成了,我估计是 numpy 和 pandas 会自动 hash
    khowarizmi
        9
    khowarizmi  
       2017-05-22 15:31:26 +08:00
    @guolingbing 刚才我源码看了一半,说法不是很准确。正确的应该是,当两个数组长度相当的时候,np.in1d 用的是 merge sort 所以速度应该已经是较快的了。只有在一个数组较短的时候 np.in1d 才使用了嵌套遍历(它说这种情况下嵌套遍历会相当快)。所以这里你使用的那个方法速度确实已经足够了。
    khowarizmi
        10
    khowarizmi  
       2017-05-22 15:41:11 +08:00
    @guolingbing 但我还是觉得 np.in1d 是帮你把复杂度从 O(nm) 降到 O((n+m)log(n+m)), 使用用 hash 应该能更快,因为复杂度理论上只有 O(max(n, m)) 。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3108 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 33ms UTC 12:33 PVG 20:33 LAX 05:33 JFK 08:33
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86