
f(3)函数总是计算错误
`//粒子群 PSO 算法
#include<stdio.h> #include<math.h> #include<time.h> #include<stdlib.h> #define Pnum 200 //粒子数目
#define dim 50 #define low -512 //搜索域范围 #define high 512 #define iter_num 1000 #define V_max 20 //速度范围 #define c1 2 #define c2 2 #define w 0.5 #define alp 1 double particle[P_num][dim]; //个体集合 double particle_loc_best[P_num][dim]; //每个个体局部最优向量 double particle_loc_fit[P_num]; //个体的局部最优适应度,有局部最优向量计算而来 double particle_glo_best[dim]; //全局最优向量 double gfit; //全局最优适应度,有全局最优向量计算而来
double particle_v[P_num][dim]; //记录每个个体的当前代速度向量 double particle_fit[P_num]; //记录每个粒子的当前代适应度
double f1(double a[]) { int i; double sum=0.0; for(i=0; i<dim; i++) { sum+=a[i]*a[i]; } return sum; }
double f2(double a[]) { int i; double sum=0.0; for(i=0;i<dim;i++) { sum=(1+(a[i]+a[i+1]+1)(a[i]+a[i+1]+1)(19-14a[i]+3a[i]a[i]-14a[i+1]+6a[i]a[i+1]+3a[i+1]a[i+1]))(30+(2a[i]-3a[i+1])(2a[i]-3a[i+1])(18-32a[i]+12a[i]a[i]+48a[i+1]-36a[i]a[i+1]+27a[i+1]*a[i+1])); } return sum; }
double f3(double a[]) { int i; double sum=0.0; for(i=0;i<dim;i++) { sum+=-a[i]sin(sqrt(abs(a[i]))); } return sum; } double fitness(double a[]) //适应度函数 { return f2(a); } void initial() { int i,j; for(i=0; i<P_num; i++) //随即生成粒子 { for(j=0; j<dim; j++) { particle[i][j] = low+(high-low)1.0rand()/RAND_MAX; //初始化群体 particle_loc_best[i][j] = particle[i][j]; //将当前最优结果写入局部最优集合 particle_v[i][j] = -V_max+2V_max1.0rand()/RAND_MAX; //速度 } } for(i=0; i<P_num; i++) //计算每个粒子的适应度 { particle_fit[i] = fitness(particle[i]); particle_loc_fit[i] = particle_fit[i]; } gfit = particle_loc_fit[0]; //找出全局最优 j=0; for(i=1; i<P_num; i++) { if(particle_loc_fit[i]<gfit) { gfit = particle_loc_fit[i]; j = i; } } for(i=0; i<dim; i++) //更新全局最优向量 { particle_glo_best[i] = particle_loc_best[j][i]; } } void renew_particle() { int i,j; for(i=0; i<P_num; i++) //更新个体位置生成位置 { for(j=0; j<dim; j++) { particle[i][j] += alpparticle_v[i][j]; if(particle[i][j] > high) { particle[i][j] = high; } if(particle[i][j] < low) { particle[i][j] = low; } } } } void renew_var() { int i, j; for(i=0; i<P_num; i++) //计算每个粒子的适应度 { particle_fit[i] = fitness(particle[i]); if(particle_fit[i] < particle_loc_fit[i]) //更新个体局部最优值 { particle_loc_fit[i] = particle_fit[i]; for(j=0; j<dim; j++) // 更新局部最优向量 { particle_loc_best[i][j] = particle[i][j]; } } } for(i=0,j=-1; i<P_num; i++) //更新全局变量 { if(particle_loc_fit[i]<gfit) { gfit = particle_loc_fit[i]; j = i; } } if(j != -1) { for(i=0; i<dim; i++) //更新全局最优向量
{ particle_glo_best[i] = particle_loc_best[j][i]; } } for(i=0; i<P_num; i++) //更新个体速度 { for(j=0; j<dim; j++) { particle_v[i][j]=wparticle_v[i][j]+ c11.0rand()/RAND_MAX*(particle_loc_best[i][j]-particle[i][j])+ c21.0rand()/RAND_MAX*(particle_glo_best[j]-particle[i][j]); if(particle_v[i][j] > V_max) { particle_v[i][j] = V_max; } if(particle_v[i][j] < -V_max) { particle_v[i][j] = -V_max; } } } } int main() { freopen("result.txt","a+",stdout); int i=0; srand((unsigned)time(NULL)); initial(); while(i < iter_num) { renew_particle(); renew_var(); i++; } printf("粒子个数:%d\n",P_num); printf("维度为:%d\n",dim); printf("最优值为%.10lf\n", gfit); return 0; }`
//Part 1 #include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>
#define P_num 50 //粒子数目,m
#define dim 20 //粒子维度,n
#define low -500 //搜索域范围
#define high 500
#define iter_num 1000 //迭代次数,k
#define V_max 20 //速度范围
#define c1 2
#define c2 2
//#define w 0.5
#define wmax 0.9
#define wmin 0.4
double particle[P_num][dim]; //个体集合
double particle_loc_best[P_num][dim]; //每个个体局部最优向量
double particle_loc_fit[P_num]; //个体的局部最优适应度,有局部最优向量计算而来
double particle_glo_best[dim]; //全局最优向量
double gfit; //全局最优适应度,有全局最优向量计算而来
double particle_v[P_num][dim]; //记录每个个体的当前代速度向量
double particle_fit[P_num]; //记录每个粒子的当前代适应度
//随机生成粒子 for(i=0; i<P_num; i++) //在粒子群中生成粒子 { for(j=0; j<dim; j++) //在搜索空间内生成粒子 { particle[i][j] = low+(high-low)*1.0*rand()/RAND_MAX; //初始化群体 particle_loc_best[i][j] = particle[i][j]; //将当前最优结果写入局部最优集合 particle_v[i][j] = -V_max+2*V_max*1.0*rand()/RAND_MAX; //速度 } } for(i=0; i<P_num; i++) //计算每个粒子的适应度 { particle_fit[i] = fitness(particle[i]); particle_loc_fit[i] = particle_fit[i]; } gfit = particle_loc_fit[0]; //找出全局最优 j=0; for(i=1; i<P_num; i++) { if(particle_loc_fit[i]<gfit) { gfit = particle_loc_fit[i]; j = i; } } for(i=0; i<dim; i++) //更新全局最优向量 { particle_glo_best[i] = particle_loc_best[j][i]; } }
void renew_particle()
{
int i,j; for(i=0; i<P_num; i++) //更新个体位置生成位置 { for(j=0; j<dim; j++) { particle[i][j] += particle_v[i][j]; if(particle[i][j] > high) { particle[i][j] = high; } if(particle[i][j] < low) { particle[i][j] = low; } } } }
1 chaosoy 2016-12-13 10:34:49 +08:00 眼晕 |
2 mnzlichunyu 2016-12-13 10:36:52 +08:00 这谁要是看完了,我敬他是一条好汉。 |
3 l91liliang OP @zchpeng @mnzlichunyu Sorry.不会用 markdown 。求教。。。 |
4 aleen42 2016-12-13 10:45:49 +08:00 = =你不会断点 debug ,然后查哪一行计算异常吗? |
5 aleen42 2016-12-13 10:48:51 +08:00 虽然我也小白,但建议你对照这个项目,看看自己的算法哪里出错了。 https://github.com/kkentzo/pso |
6 l91liliang OP @aleen42 我正在调试中,感觉问题不大。但是结果是错误的。我再慢慢调试吧。谢谢您。 |
7 altairkuma 2016-12-13 10:58:35 +08:00 ``` #include<stdio.h> #include<math.h> #include<time.h> #include<stdlib.h> #define P_num 200 //粒子数目 #define dim 50 #define low -512 //搜索域范围 #define high 512 #define iter_num 1000 #define V_max 20 //速度范围 #define c1 2 #define c2 2 #define w 0.5 #define alp 1 double particle[P_num][dim]; //个体集合 double particle_loc_best[P_num][dim]; //每个个体局部最优向量 double particle_loc_fit[P_num]; //个体的局部最优适应度,有局部最优向量计算而来 double particle_glo_best[dim]; //全局最优向量 double gfit; //全局最优适应度,有全局最优向量计算而来 double particle_v[P_num][dim]; //记录每个个体的当前代速度向量 double particle_fit[P_num]; //记录每个粒子的当前代适应度 double f1(double a[]) { int i; double sum=0.0; for(i=0; i<dim; i++) { sum+=a[i]*a[i]; } return sum; } double f2(double a[]) { int i; double sum=0.0; for(i=0;i<dim;i++) { sum=(1+(a[i]+a[i+1]+1)(a[i]+a[i+1]+1)(19-14a[i]+3a[i]a[i]-14a[i+1]+6a[i]a[i+1]+3a[i+1]a[i+1]))(30+(2a[i]-3a[i+1])(2a[i]-3a[i+1])(18-32a[i]+12a[i]a[i]+48a[i+1]-36a[i]a[i+1]+27a[i+1]*a[i+1])); } return sum; } double f3(double a[]) { int i; double sum=0.0; for(i=0;i<dim;i++) { sum+=-a[i]sin(sqrt(abs(a[i]))); } return sum; } double fitness(double a[]) //适应度函数 { return f2(a); } void initial() { int i,j; for(i=0; i<P_num; i++) //随即生成粒子 { for(j=0; j<dim; j++) { particle[i][j] = low+(high-low)1.0rand()/RAND_MAX; //初始化群体 particle_loc_best[i][j] = particle[i][j]; //将当前最优结果写入局部最优集合 particle_v[i][j] = -V_max+2V_max1.0rand()/RAND_MAX; //速度 } } for(i=0; i<P_num; i++) //计算每个粒子的适应度 { particle_fit[i] = fitness(particle[i]); particle_loc_fit[i] = particle_fit[i]; } gfit = particle_loc_fit[0]; //找出全局最优 j=0; for(i=1; i<P_num; i++) { if(particle_loc_fit[i]<gfit) { gfit = particle_loc_fit[i]; j = i; } } for(i=0; i<dim; i++) //更新全局最优向量 { particle_glo_best[i] = particle_loc_best[j][i]; } } void renew_particle() { int i,j; for(i=0; i<P_num; i++) //更新个体位置生成位置 { for(j=0; j<dim; j++) { particle[i][j] += alpparticle_v[i][j]; if(particle[i][j] > high) { particle[i][j] = high; } if(particle[i][j] < low) { particle[i][j] = low; } } } } void renew_var() { int i, j; for(i=0; i<P_num; i++) //计算每个粒子的适应度 { particle_fit[i] = fitness(particle[i]); if(particle_fit[i] < particle_loc_fit[i]) //更新个体局部最优值 { particle_loc_fit[i] = particle_fit[i]; for(j=0; j<dim; j++) // 更新局部最优向量 { particle_loc_best[i][j] = particle[i][j]; } } } for(i=0,j=-1; i<P_num; i++) //更新全局变量 { if(particle_loc_fit[i]<gfit) { gfit = particle_loc_fit[i]; j = i; } } if(j != -1) { for(i=0; i<dim; i++) //更新全局最优向量 { particle_glo_best[i] = particle_loc_best[j][i];} } for(i=0; i<P_num; i++) //更新个体速度 { for(j=0; j<dim; j++) { particle_v[i][j]=wparticle_v[i][j]+ c11.0rand()/RAND_MAX*(particle_loc_best[i][j]-particle[i][j])+ c21.0rand()/RAND_MAX*(particle_glo_best[j]-particle[i][j]); if(particle_v[i][j] > V_max) { particle_v[i][j] = V_max; } if(particle_v[i][j] < -V_max) { particle_v[i][j] = -V_max; } } } } int main() { freopen("result.txt","a+",stdout); int i=0; srand((unsigned)time(NULL)); initial(); while(i < iter_num) { renew_particle(); renew_var(); i++; } printf("粒子个数:%d\n",P_num); printf("维度为:%d\n",dim); printf("最优值为%.10lf\n", gfit); return 0; } ``` |
8 spice630 2016-12-13 11:01:29 +08:00 兄弟,我告诉你个方法,在 github 上发个 gist ,贴过来 |
9 l91liliang OP @spice630 ok |
10 lsmgeb89 2016-12-13 11:30:31 +08:00 这会不会贴代码啊…… |
11 araraloren 2016-12-13 11:34:16 +08:00 ...描述一下问题 代码最好贴在别的地方, V2EX 的代码展示体验太差 |
12 l91liliang OP 各位兄弟,格式还不错的版本已添加进附言 1 、 2 ,请各位帮帮忙。 |
13 ivanlw 2016-12-14 03:11:32 +08:00 附言的格式还不错?怪不得你看不懂代码 |
14 l91liliang OP @ivanlw 我说了自己是小白嘛。恳请您协助解决问题。谢谢。 |