关于 leetcode 的 70. Climbing Stairs 的问题 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
bigpigeon
V2EX    LeetCode

关于 leetcode 的 70. Climbing Stairs 的问题

  •  
  •   bigpigeon 2016 年 9 月 19 日 3672 次点击
    这是一个创建于 3404 天前的主题,其中的信息可能已经有所发展或是发生改变。

    我的做法是这样

    func climbStairs(n int) int { sum := 0 for i, j := n, 0; i >= 0; i, j = i-2, j+1 { sum += i*j + 1 } return sum }  

    我发现 m 个 1 和 n 个 2 组合总数等于 m*n+1

    但当我提交时却报错:

    Input: 6 Output: 12 Expected: 13 

    但我去验证发现确实应该是 12 个才对啊 楼梯数为 6 的爬法

    111111 11112 11121 11211 12111 21111 1122 1212 1221 2121 2211 222 

    难道我忽略什么了?

    8 条回复    2016-09-19 21:17:21 +08:00
    bigpigeon
        1
    bigpigeon  
    OP
       2016 年 9 月 19 日
    timekiller
        2
    timekiller  
       2016 年 9 月 19 日 via iPhone   1
    2112
    theFool
        3
    theFool  
       2016 年 9 月 19 日   1
    Fibonacci ?
    czheo
        4
    czheo  
       2016 年 9 月 19 日   1
    hanzichi
        5
    hanzichi  
       2016 年 9 月 19 日
    2112 。。。
    hanzichi
        6
    hanzichi  
       2016 年 9 月 19 日   1
    m 个 1 和 n 个 2 组合总数等于 m*n+1 。。
    这怎么推出来的。。很明显是 C(n+m,n) 吧。。

    安利下我的题解 Repo => https://github.com/hanzichi/leetcode
    zhy0216
        7
    zhy0216  
       2016 年 9 月 19 日   1
    2112 ...
    bigpigeon
        8
    bigpigeon  
    OP
       2016 年 9 月 19 日
    @hanzichi
    确实粗心了,非常感谢
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     5859 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 35ms UTC 02:39 PVG 10:39 LAX 18:39 JFK 21:39
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86