搞了个推荐系统的脚手架,大家来看看设计得怎么样 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
ldyisbest
V2EX    推广

搞了个推荐系统的脚手架,大家来看看设计得怎么样

  •  
  •   ldyisbest 18 小时 41 分钟前 338 次点击
    以下内容非 AI 生成!!

    做推荐系统两年多,基于对推荐系统的了解,沉淀了个工程框架,想和大家交流一下。

    (公司)现有系统问题

    复用性问题

    • 每个场景都是独立的流程,逻辑差不多但各写各的
    • 召回、过滤、排序的逻辑到处 copy
    • 混合推荐和单业务推荐不能复用,召回策略相似但代码分离
    • 新场景几乎需要重新实现一套召回、过滤、排序流程,不能快速响应

    可观测性问题

    • 出问题很难定位,不知道是哪个阶段的问题
    • 日志散落各处,想看完整流程得拼日志,没有结构化的日志

    设计思路

    标准流水线+自定义拦截器

    把推荐流程抽象成 7 个阶段,每个阶段都可以自定义策略,无论是调用外部接口还是自有实现,策略之间可以组合,每个阶段前后都可以自定义拦截器,比如性能埋点、曝光去重、结果记录这些通用逻辑。所有场景走同一套流水线:

    实验分流 → 画像加载 → 召回 → 过滤 → 排序 → 重排 → 填充 

    Prism Architecture

    这个图由 ai 生成

    组件化,复用性强

    每个阶段的策略都是独立组件,注册成 Spring Bean:

    // 召回策略 @Component("UserInterestRecall") // 用户兴趣召回 public class UserInterestRecall implements RecallStrategy {} @Component("HotRecall") // 热门召回 public class HotRecall implements RecallStrategy {} @Component("CrossDomainRecall") // 跨业务召回 public class CrossDomainRecall implements RecallStrategy {} @Component("VectorRecall") // 向量化召回 public class VectorRecall implements RecallStrategy {} // 重排策略 @Component("DiversityRerank") // 多元化重排 public class DiversityRerank implements RerankStrategy {} @Component("BusinessRuleRerank") // 业务规则重排 public class BusinessRuleRerank implements RerankStrategy {} @Component("AdRerank") // 广告重排 public class AdRerank implements RerankStrategy {} 

    混合推荐和单业务推荐的区别,就是配置里组合的策略不同,代码完全复用。

    配置驱动

    整个流程用 YAML 配置,不用改代码:

    recall: - when: { experiment: "recall_exp", variant: "full" } steps: - name: "UserInterestRecall" - name: "HotRecall" - name: "CrossDomainRecall" - when: { experiment: "recall_exp", variant: "minimal" } steps: - name: "UserInterestRecall" 

    不同场景、不同实验组,改配置就搞定,如果当前组件不满足需求,只用开发新的组件即可。完整的 yaml 可以在代码仓库中查看。

    全链路日志追踪

    推荐过程有完整的推荐日志,一目了然,方便排查问题:

    { "globalLogs": [ "[2026-01-20 21:48:35] Starting Pipeline Execution for User: alice", "[2026-01-20 21:48:35] Pipeline Execution Completed. Result Size: 25" ], "stages": { "EXPERIMENT": { "stage": "EXPERIMENT", "duration": 0, "inputIds": [], "logs": [], "now": "2026-01-20T21:48:35.11616", "outputIds": [], "plugins": { "ExperimentStrategy": { "name": "ExperimentStrategy", "currentSize": 0, "latency": 0, "logs": [ "[2026-01-20 21:48:35] User [alice] assigned to Experiment [recall_exp], Variant [full]", "[2026-01-20 21:48:35] User [alice] assigned to Experiment [rank_exp], Variant [mmoe]" ] } }, "startTime": 1768916915116 }, "PROFILE": { "stage": "PROFILE", "duration": 3, "inputIds": [], "logs": [ "[2026-01-20 21:48:35] Loaded 1 exposure records for user: alice" ], "now": "2026-01-20T21:48:35.116304", "outputIds": [], "plugins": { "MockProfile": { "name": "MockProfile", "currentSize": 0, "latency": 3, "logs": [ "[2026-01-20 21:48:35] get user: alice vector", "[2026-01-20 21:48:35] get user: alice interests", "[2026-01-20 21:48:35] get user: alice profile success" ] } }, "startTime": 1768916915116 }, "RECALL": { "stage": "RECALL", "duration": 11, "inputIds": [], "logs": [], "now": "2026-01-20T21:48:35.119306", "outputIds": ["..."], "plugins": { "UserInterestRecall": { "name": "UserInterestRecall", "currentSize": 15, "latency": 11, "logs": [] } ... }, "startTime": 1768916915119 }, ... } } 

    试一试

    项目地址:https://github.com/xi-mad/prism

    git clone https://github.com/xi-mad/prism.git cd prism mvn spring-boot:run -Dspring-boot.run.jvmArguments="--enable-preview" 

    我是使用 java25 运行的,别的版本没有测试,跑起来访问 http://localhost:9990/,有个 Web 演示页面,可以直接编辑 YAML 配置,不同的策略组合就能看到不同的推荐结果和执行 Trace 。不同的策略有不同的参数,可以再代码中查看,UI 做的很简单,只是为了演示,实际应用时可以配置不同的场景,将配置信息存在数据库,业务根据场景 id 进行请求。

    如果有能帮助到您的地方,十分荣幸。请帮忙 star 一下,万分感谢。

    欢迎大家一起交流讨论~

    2 条回复    2026-01-21 10:33:33 +08:00
    Kirkcong
        1
    Kirkcong  
       18 小时 38 分钟前
    @Livid 软文推广
    renjp
        2
    renjp  
       18 小时 14 分钟前
    最近刚还在学习推荐系统, 收藏一下
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     958 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 122ms UTC 20:48 PVG 04:48 LAX 12:48 JFK 15:48
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86