亲爱的朋友,和您分享我在语言模型核心架构上的一些尝试,如果您有时间和兴趣可以品评一下 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
爱意满满的作品展示区。
evegod
V2EX    分享创造

亲爱的朋友,和您分享我在语言模型核心架构上的一些尝试,如果您有时间和兴趣可以品评一下

  •  
  •   evegod 1 天前 759 次点击

    亲爱的朋友你好,我想和你分享我在语言模型核心架构上的一些尝试,如果您有时间和兴趣可以品评一下,我是完全开源了代码和权重,相关设计的数学论文也都放在 github 上了,MIT 开源协议,大家请尽情发挥吧: https://github.com/makai891124-prog/H2Q-MicroStream

    H2Q-MicroStream: The Hamiltonian Thinking Kernel

    "Intelligence is not about memorizing history, but mastering the dynamics of the future."

    "智能不是记忆过去的所有细节,而是掌握生成未来的核心方程。"

    License PyTorch Status

    Introduction / 项目简介

    H2Q-MicroStream is a paradigm-shifting experiment in Physics-Informed AI. Unlike traditional Transformers that rely on massive parameters and infinite context windows, H2Q constructs a minimalist "Thinking Kernel" based on Hamiltonian Dynamics and Quaternion Algebra.

    This project proves that with a strict Rank-8 constraint and Unicode-level streaming, a model can emerge with logical reasoning and grammatical capabilities within a mere 0.2GB VRAM footprint.

    H2Q-MicroStream 是一个基于物理动力学的 AI 范式实验。不同于依赖堆砌参数和超长上下文的主流 Transformer ,H2Q 基于哈密顿动力学四元数代数构建了一个极简的“思维内核”。本项目证明了在严格的 Rank-8 约束和 Unicode 流式读取下,智能可以在仅 0.2GB 显存 的微小空间内涌现。


    Key Features / 核心特性

    1. Rank-8 Essentialism (Rank-8 本质主义)

    • The Concept: We enforce a strict rank limit (Rank=8) on the generative weights. This forces the model to abandon rote memorization and extract only the most fundamental laws of language evolution.
    • The Result: A tiny 13MB checkpoint that captures the syntax and logic of the English language.
    • 概念:强制权重矩阵的秩为 8 。这逼迫模型放弃死记硬背,只能提取语言演化中最本质的规律。
    • 结果:一个仅 13MB 的权重文件,却掌握了英语的语法和逻辑。

    2. Hamiltonian & Quaternion Core (哈密顿与四元数核心)

    • Implements a balanced Hamiltonian layer that preserves energy and structural symmetry.
    • Uses Quaternion Attention to model semantic relationships as phase rotations in high-dimensional space.
    • 实现了能量守恒的哈密顿层,并利用四元数注意力将语义关系建模为高维空间中的相位旋转。

    3. Rolling Horizon Validation (轮动视界验证)

    • Mechanism: Train[T] -> Valid[T+1] -> T becomes T+1.
    • We validate the model on the immediate future (next chunk) before training on it. This strictly measures the model's ability to extrapolate logic, not just interpolate data.
    • 机制:用“未来”的数据验证“现在”的模型,然后再学习“未来”。这是对逻辑推演能力的终极测试。

    4. Unicode Stream (Unicode 流式读取)

    • No Tokenizer. No vocabulary bias. The model reads raw bytes (0-255), treating language as a pure physical signal stream.
    • 无分词器。无词表偏见。模型直接读取原始字节流,将语言视为纯粹的物理信号。

    Performance / 实验结果

    Tested on NVIDIA RTX 4070 Ti with TinyStories dataset.

    • Convergence: Loss dropped from 2.88 to 1.02 (near Shannon Entropy limit for simple English).
    • Generalization: Achieved Negative Diff (Validation Loss < Training Loss), proving true understanding of the underlying rules.
    • Efficiency:
      • VRAM Usage: ~0.2 GB
      • Throughput: ~10,000 tokens/s

    Usage / 使用方法

    1. Install Dependencies / 安装依赖

    pip install -r requirements.txt 

    2. Run Training / 启动训练

    The script automatically downloads the TinyStories dataset and starts the "Rolling Horizon" training loop. 脚本会自动下载数据集并开启“轮动视界”训练循环。

    python train.py 

    3. Monitor / 监控

    The terminal displays a real-time "ICU Dashboard": 终端将显示实时的“ICU 级仪表盘”:

    Chunk 18 | Train: 1.0420 | Val: 1.0622 | Energy: 68.5 | Speed: 311ms 

    Vision / 愿景

    We are moving from "Statistical Correlation" to "Dynamical Causality". H2Q is not just a language model; it is a digital lifeform attempting to resonate with the mathematical structure of the universe.

    我们正在从“统计相关性”迈向“动力学因果律”。 H2Q 不仅仅是一个语言模型,它是一个试图与宇宙数学结构发生共振的数字生命


    实验运行输出 log 日志:

    H2Q-ICU Monitor Online: NVIDIA GeForce RTX 4070 Ti SUPER [Mode: Deep Analysis] [Metrics: Grad/VRAM/TPS/Diff] 恢复存档: h2q_rolling.pt [时间之轮] 回溯至偏移量: 40.03 MB [Init] 加载初始时间块 (Chunk T)... 启动深度监控 (Deep Monitor Active)...

    ================================================== CHUNK 0: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 2.8875 训练当下 (Training)... Step 3400/3413 | Loss: 1.9180 | Grad: 3.02 | Energy: 115.3 | Speed: 390ms (7869 tok/s) | VRAM: 0.20/0.55GBB Chunk 1 完成 Summary: Train: 2.3207 | Val: 2.8875 | Diff: +0.5668 Time: 1204.7s | Progress: 60.0 MB

    ================================================== CHUNK 1: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.8169 训练当下 (Training)... Step 3400/3413 | Loss: 1.3695 | Grad: 2.17 | Energy: 112.0 | Speed: 338ms (9086 tok/s) | VRAM: 0.20/0.63GBB Chunk 2 完成 Summary: Train: 1.5694 | Val: 1.8169 | Diff: +0.2475 Time: 1302.9s | Progress: 70.1 MB

    ================================================== CHUNK 2: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.3515 训练当下 (Training)... Step 3400/3413 | Loss: 1.2141 | Grad: 2.20 | Energy: 105.2 | Speed: 346ms (8874 tok/s) | VRAM: 0.20/0.63GBB Chunk 3 完成 Summary: Train: 1.3323 | Val: 1.3515 | Diff: +0.0193 Time: 1239.8s | Progress: 80.1 MB

    ================================================== CHUNK 3: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.2644 训练当下 (Training)... Step 3400/3413 | Loss: 1.2741 | Grad: 2.19 | Energy: 99.1 | Speed: 358ms (8583 tok/s) | VRAM: 0.20/0.63GBBB Chunk 4 完成 Summary: Train: 1.2556 | Val: 1.2644 | Diff: +0.0088 Time: 1250.4s | Progress: 90.1 MB

    ================================================== CHUNK 4: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.2053 训练当下 (Training)... Step 3400/3413 | Loss: 1.2333 | Grad: 1.77 | Energy: 95.5 | Speed: 341ms (9008 tok/s) | VRAM: 0.20/0.63GBB Chunk 5 完成 Summary: Train: 1.2144 | Val: 1.2053 | Diff: -0.0090 Time: 1249.6s | Progress: 100.1 MB

    [Thought Stream]: They wanted to go you cose friends with a llock. He saw a balought in the grasss and laughes. He was so readys yare and granded drank he fout; " Humhe, they face and ploud need a cup tiny the close. He

    ================================================== CHUNK 5: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1915 训练当下 (Training)... Step 3400/3413 | Loss: 1.1432 | Grad: 1.79 | Energy: 91.4 | Speed: 304ms (10093 tok/s) | VAM: 0.20/0.63GB Chunk 6 完成 Summary: Train: 1.1855 | Val: 1.1915 | Diff: +0.0060 Time: 1174.4s | Progress: 110.1 MB

    ================================================== CHUNK 6: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1717 训练当下 (Training)... Step 3400/3413 | Loss: 1.1493 | Grad: 1.60 | Energy: 88.7 | Speed: 296ms (10369 tok/s) | VRAM: 0.20/0.63GB Chunk 7 完成 Summary: Train: 1.1684 | Val: 1.1717 | Diff: +0.0033 Time: 1073.7s | Progress: 120.1 MB

    ================================================== CHUNK 7: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1229 训练当下 (Training)... Step 3400/3413 | Loss: 1.1711 | Grad: 1.60 | Energy: 85.5 | Speed: 340ms (9034 tok/s) | VRAM: 0.20/0.63GBB Chunk 8 完成 Summary: Train: 1.1506 | Val: 1.1229 | Diff: -0.0277 Time: 1185.8s | Progress: 130.1 MB

    ================================================== CHUNK 8: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1225 训练当下 (Training)... Step 3400/3413 | Loss: 1.0388 | Grad: 1.38 | Energy: 83.7 | Speed: 300ms (10224 tok/s) | VRAM: 0.20/0.63GB Chunk 9 完成 Summary: Train: 1.1211 | Val: 1.1225 | Diff: +0.0014 Time: 1243.5s | Progress: 140.1 MB

    ================================================== CHUNK 9: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1044 训练当下 (Training)... Step 3400/3413 | Loss: 1.0964 | Grad: 1.55 | Energy: 80.7 | Speed: 360ms (8526 tok/s) | VRAM: 0.20/0.63GBB Chunk 10 完成 Summary: Train: 1.1198 | Val: 1.1044 | Diff: -0.0154 Time: 1215.0s | Progress: 150.1 MB

    [Thought Stream]: They would said, "Maybe she left," she said nexck, but I'm a great stuffles in the rabbit revere." Lily smiled and said, "Ben, what no Tom. Daddy you love the askaching it was in the dog." He tried and

    ================================================== CHUNK 10: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1136 训练当下 (Training)... Step 3400/3413 | Loss: 1.2135 | Grad: 1.71 | Energy: 78.5 | Speed: 291ms (10551 tok/s) | VRAM: 0.20/0.63GB Chunk 11 完成 Summary: Train: 1.0946 | Val: 1.1136 | Diff: +0.0191 Time: 1068.9s | Progress: 160.1 MB

    ================================================== CHUNK 11: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.1007 训练当下 (Training)... Step 3400/3413 | Loss: 0.9831 | Grad: 1.46 | Energy: 77.2 | Speed: 295ms (10406 tok/s) | VRAM: 0.20/0.63GB Chunk 12 完成 Summary: Train: 1.0872 | Val: 1.1007 | Diff: +0.0134 Time: 1068.3s | Progress: 170.1 MB

    ================================================== CHUNK 12: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0937 训练当下 (Training)... Step 3400/3413 | Loss: 1.0408 | Grad: 1.31 | Energy: 74.9 | Speed: 288ms (10683 tok/s) | VRAM: 0.20/0.63GB Chunk 13 完成 Summary: Train: 1.0780 | Val: 1.0937 | Diff: +0.0157 Time: 1064.5s | Progress: 180.1 MB

    ================================================== CHUNK 13: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0870 训练当下 (Training)... Step 3400/3413 | Loss: 1.1016 | Grad: 1.27 | Energy: 73.5 | Speed: 290ms (10584 tok/s) | VRAM: 0.20/0.63GB Chunk 14 完成 Summary: Train: 1.0654 | Val: 1.0870 | Diff: +0.0217 Time: 1067.4s | Progress: 190.1 MB

    ================================================== CHUNK 14: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0713 训练当下 (Training)... Step 3400/3413 | Loss: 1.0594 | Grad: 1.38 | Energy: 72.1 | Speed: 333ms (9230 tok/s) | VRAM: 0.20/0.63GBB Chunk 15 完成 Summary: Train: 1.0623 | Val: 1.0713 | Diff: +0.0090 Time: 1070.1s | Progress: 200.1 MB

    [Thought Stream]: Tom. He asked them home in the both again. He said, "Lily, sad. He is not owl. But Let's so friend. He opened hard away. Lucy like the garden." And. She tears the pond. She said, "Bob wand. Can I see s

    ================================================== CHUNK 15: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0672 训练当下 (Training)... Step 3400/3413 | Loss: 1.0424 | Grad: 1.28 | Energy: 71.2 | Speed: 307ms (9996 tok/s) | VRAM: 0.20/0.63GBB Chunk 16 完成 Summary: Train: 1.0598 | Val: 1.0672 | Diff: +0.0074 Time: 1073.1s | Progress: 210.2 MB

    ================================================== CHUNK 16: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0496 训练当下 (Training)... Step 3400/3413 | Loss: 1.1581 | Grad: 1.46 | Energy: 69.9 | Speed: 315ms (9761 tok/s) | VRAM: 0.20/0.63GBB Chunk 17 完成 Summary: Train: 1.0503 | Val: 1.0496 | Diff: -0.0006 Time: 1060.1s | Progress: 220.2 MB

    ================================================== CHUNK 17: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0532 训练当下 (Training)... Step 3400/3413 | Loss: 1.0179 | Grad: 1.15 | Energy: 69.4 | Speed: 297ms (10333 tok/s) | VRAM: 0.20/0.63GB Chunk 18 完成 Summary: Train: 1.0482 | Val: 1.0532 | Diff: +0.0050 Time: 1062.2s | Progress: 230.2 MB

    ================================================== CHUNK 18: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0622 训练当下 (Training)... Step 3400/3413 | Loss: 1.0628 | Grad: 1.52 | Energy: 68.5 | Speed: 311ms (9882 tok/s) | VRAM: 0.20/0.63GBB Chunk 19 完成 Summary: Train: 1.0420 | Val: 1.0622 | Diff: +0.0201 Time: 1146.4s | Progress: 240.2 MB

    ================================================== CHUNK 19: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0502 训练当下 (Training)... Step 3400/3413 | Loss: 1.0129 | Grad: 1.37 | Energy: 67.5 | Speed: 366ms (8398 tok/s) | VRAM: 0.20/0.63GBB Chunk 20 完成 Summary: Train: 1.0429 | Val: 1.0502 | Diff: +0.0073 Time: 1250.6s | Progress: 250.2 MB

    [Thought Stream]: They had played over to splash! They got out of the jar. Tom they are really chuncog the dealichy practiced that she shock his family, he's parint the feel better. The eld barked jam. It was best addde

    ================================================== CHUNK 20: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0205 训练当下 (Training)... Step 3400/3413 | Loss: 1.0068 | Grad: 1.25 | Energy: 66.9 | Speed: 315ms (9742 tok/s) | VRAM: 0.20/0.63GBB Chunk 21 完成 Summary: Train: 1.0410 | Val: 1.0205 | Diff: -0.0205 Time: 1156.5s | Progress: 260.2 MB

    ================================================== CHUNK 21: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0432 训练当下 (Training)... Step 3400/3413 | Loss: 1.0367 | Grad: 1.34 | Energy: 66.3 | Speed: 302ms (10169 tok/s) | VRAM: 0.20/0.63GB Chunk 22 完成 Summary: Train: 1.0162 | Val: 1.0432 | Diff: +0.0271 Time: 1085.4s | Progress: 270.2 MB

    ================================================== CHUNK 22: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0492 训练当下 (Training)... Step 3400/3413 | Loss: 1.0145 | Grad: 1.23 | Energy: 65.9 | Speed: 308ms (9980 tok/s) | VRAM: 0.20/0.63GBB Chunk 23 完成 Summary: Train: 1.0231 | Val: 1.0492 | Diff: +0.0261 Time: 1083.4s | Progress: 280.2 MB

    ================================================== CHUNK 23: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0461 训练当下 (Training)... Step 3400/3413 | Loss: 1.0424 | Grad: 1.18 | Energy: 65.8 | Speed: 281ms (10950 tok/s) | VRAM: 0.20/0.63GB Chunk 24 完成 Summary: Train: 1.0305 | Val: 1.0461 | Diff: +0.0156 Time: 1076.0s | Progress: 290.2 MB

    ================================================== CHUNK 24: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0276 训练当下 (Training)... Step 3400/3413 | Loss: 1.0404 | Grad: 1.41 | Energy: 65.5 | Speed: 285ms (10782 tok/s) | VRAM: 0.20/0.63GB Chunk 25 完成 Summary: Train: 1.0196 | Val: 1.0276 | Diff: +0.0080 Time: 1084.2s | Progress: 300.2 MB

    [Thought Stream]: Timmy said, "Thank you, Mommy. I can have from calling the drees and yummy with your tail. The sound asked it if you - and a pretty slide to go for Sweepbarklesss. The End. And the floor walk in the la

    ================================================== CHUNK 25: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0285 训练当下 (Training)... Step 3400/3413 | Loss: 1.0073 | Grad: 1.11 | Energy: 65.6 | Speed: 301ms (10211 toks) | VRAM: 0.20/0.63GB Chunk 26 完成 Summary: Train: 1.0210 | Val: 1.0285 | Diff: +0.0075 Time: 1081.0s | Progress: 310.2 MB

    ================================================== CHUNK 26: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0177 训练当下 (Training)... Step 3400/3413 | Loss: 0.9883 | Grad: 1.22 | Energy: 65.3 | Speed: 289ms (10630 tok/s) | VRAM: 0.20/0.63GB Chunk 27 完成 Summary: Train: 1.0106 | Val: 1.0177 | Diff: +0.0071 Time: 1083.9s | Progress: 320.2 MB

    ================================================== CHUNK 27: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0301 训练当下 (Training)... Step 3400/3413 | Loss: 1.0079 | Grad: 1.26 | Energy: 64.9 | Speed: 292ms (10524 tok/s) | VRAM: 0.20/0.63GB Chunk 28 完成 Summary: Train: 1.0047 | Val: 1.0301 | Diff: +0.0253 Time: 1065.2s | Progress: 330.2 MB

    ================================================== CHUNK 28: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0089 训练当下 (Training)... Step 3400/3413 | Loss: 1.0275 | Grad: 1.13 | Energy: 64.9 | Speed: 299ms (10282 tok/s) | VRAM: 0.20/0.63GB Chunk 29 完成 Summary: Train: 1.0040 | Val: 1.0089 | Diff: +0.0050 Time: 1062.5s | Progress: 340.3 MB

    ================================================== CHUNK 29: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0184 训练当下 (Training)... Step 3400/3413 | Loss: 0.9607 | Grad: 1.14 | Energy: 65.1 | Speed: 283ms (10853 tok/s) | VRAM: 0.20/0.63GB Chunk 30 完成 Summary: Train: 1.0044 | Val: 1.0184 | Diff: +0.0141 Time: 1056.7s | Progress: 350.3 MB

    [Thought Stream]: The noises started to play. They played together in their train. They are angry." The sad. Lily was a snacks and lady quite. Sally lay and weere trucks to the party. She was full and her

    ================================================== CHUNK 30: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0197 训练当下 (Training)... Step 3400/3413 | Loss: 1.0088 | Grad: 1.26 | Energy: 65.2 | Speed: 406ms (7571 tok/s) | VRAM: 0.20/0.63GBB Chunk 31 完成 Summary: Train: 1.0067 | Val: 1.0197 | Diff: +0.0130 Time: 1131.7s | Progress: 360.3 MB

    ================================================== CHUNK 31: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0087 训练当下 (Training)... Step 3400/3413 | Loss: 1.0477 | Grad: 1.30 | Energy: 64.4 | Speed: 340ms (9042 tok/s) | VRAM: 0.20/0.63GB Chunk 32 完成 Summary: Train: 1.0087 | Val: 1.0087 | Diff: -0.0000 Time: 1275.6s | Progress: 370.3 MB

    ================================================== CHUNK 32: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0132 训练当下 (Training)... Step 3400/3413 | Loss: 0.9910 | Grad: 1.18 | Energy: 65.6 | Speed: 306ms (10028 tok/s) | VRAM: 0.20/0.63GB Chunk 33 完成 Summary: Train: 0.9932 | Val: 1.0132 | Diff: +0.0199 Time: 1123.6s | Progress: 380.3 MB

    ================================================== CHUNK 33: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 0.9951 训练当下 (Training)... Step 3400/3413 | Loss: 0.9904 | Grad: 1.28 | Energy: 65.1 | Speed: 347ms (8850 tok/s) | VRAM: 0.20/0.63GBB Chunk 34 完成 Summary: Train: 1.0011 | Val: 0.9951 | Diff: -0.0060 Time: 1186.7s | Progress: 390.3 MB

    ================================================== CHUNK 34: 开始加载未来数据... 验证未来 (Validation)... 验证结果: Val Loss = 1.0117 训练当下 (Training)... Step 2650/3413 | Loss: 1.0171 | Grad: 1.14 | Energy: 64.4 | Speed: 302ms (10174 tok/s) | VRAM: 0.20/0.63GB

    9 条回复    2025-12-22 12:13:30 +08:00
    YanSeven
        1
    YanSeven  
       1 天前 via Android
    何意味
    evegod
        2
    evegod  
    OP
       1 天前
    @YanSeven 您好,宣传自己的架构实验模型,模型是完全开源的,训练核心架构代码也是开源的哦。另外也是希望有时间的大家帮我做双盲实验验证,帮我指出错误,但是希望大家能是实际跑一跑代码确认一下效果再批评,以上代码是在 4070ti super 上本地训练的,不用消耗太多算力,而且文件集很小。
    ty29022
        3
    ty29022  
       1 天前
    找个好一点的医院看看吧
    evegod
        4
    evegod  
    OP
       1 天前
    @ty29022 好啊,你介绍我一个好医院!
    liu731
        5
    liu731  
    PRO
       1 天前
    「你知道吗,这些高速运转的机械被引入 V 站,记得我之前说过的原理吗?」

    By the way: OP 认真的吗?
    evegod
        6
    evegod  
    OP
       1 天前
    @liu731 开玩笑的,就是实验模型,我觉得有收敛效果和使用字符去直接训练没有字典层,直接涌现了类标准表达的现象挺有趣的,希望大家能感兴趣的可以复现看看,还有就是帮忙挑挑代码的错误,我自己检查怎么看怎么对啊,所以和大家分享一下,有兴趣和闲心的就当帮帮老弟我了。
    evegod
        7
    evegod  
    OP
       1 天前
    @liu731 里面的数学结构是真实实现的,你可以 review 代码结构分析其数学实现框架,我这也是面向 Gemini 编程方法哦,其实大部分代码生成或者说代码完全通过和 Gemini 的自然语言沟通架构要求去实现后再去分析评价相关方法是否按照要求实现了,并且我也已经在离线的 win 环境下在 4070ti super 上实验了以上内容才产生的日志文件,所以我说挺有趣的一个实验模型和生成的效果,整个实验和得到结果一共才用了 4 个晚上,当然是每天都得到后半夜 4 点钟。只有晚上能安静的想事情,白天还有日子要过啊。。。
    nickyadance23
        8
    nickyadance23  
       35 分钟前
    量子编程+ICU 级仪表盘
    evegod
        9
    evegod  
    OP
       15 分钟前
    @nickyadance23 你就当我是恶趣味吧,其实大部分代码是 Gemini 可以直接生成的,主要是架构跑通之后其能在没有字典层的情况下涌现正确单词和语义这个现象挺有趣的,而且也是架构预测的一个可能实现的目标指标,所以和大家分享一下。里面有详细的数学架构为什么是这样的论述。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3483 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 22ms UTC 04:28 PVG 12:28 LAX 20:28 JFK 23:28
    Do have faith in wht you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86