闭集 E 与一点 p(p 不属于 E)的距离是否有可能不大于 0? - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
huzhikuizainali
V2EX    数学

闭集 E 与一点 p(p 不属于 E)的距离是否有可能不大于 0?

  •  
  •   huzhikuizainali 137 天前 1155 次点击
    这是一个创建于 137 天前的主题,其中的信息可能已经有所发展或是发生改变
    4 条回复
    necomancer
        1
    necomancer  
       136 天前   1
    取 X=(0, 1],E=(0,1),则 E 在 X 上是闭集。E 在 X 中不紧致,取 p=1 in X, not in E ,则 inf{d(p, q)|q in E}=0,取 q->1-。
    huzhikuizainali
        2
    huzhikuizainali  
    OP
       129 天前
    @necomancer 谢谢你的回复。按照你的例子,E 在 X 上不是闭集啊! X 中的 1 作为 E 的极限点并不属于 E ,所以 E 不是 X 的相对闭集。

    其次想在 k 维实数空间有界闭集,但不是紧集的例子也不可能实现吧?海涅博雷尔定理使得 k 维实空间下的闭有界集合都是紧集。
    huzhikuizainali
        3
    huzhikuizainali  
    OP
       125 天前
    @necomancer 请问你是不是想说 取 X=(0,1),E=[0.5,1)。则 E 在 X 上闭集,但是 E 在 R 上不是紧致。因此令 p=1 ,此时 p 不属于 E ,而 d(p,E)不大于 0 。

    如果是这样,这里面有个问题。此时 E 只是相对 X 是闭集。E 相对 R 不是闭集。而距离函数是定义在 R 上的。对应 4.16 定理。显然函数 f 是定义在度量空间 X 上。因此用 X 上的相对闭集来挑战定义在 R 上的距离函数似乎并不合理。我结合公开课中前后文的意思,似乎老师也不是这么比较的。

    我猜测老师的意思还是指 E 相对于某度量空间空间(比如度量空间 X)是闭集,而距离函数 d(p,E)=inf{d(p,q),q∈E},且该函数也是定义在度量空间 X 上。二者在同一空间的前提下,再回答 E 是闭集,d(p,E)还一定大于 0 的问题。

    以上是我的猜测,如果你觉得哪里不对,还请指正!谢谢!
    cbz1998
        4
    cbz1998  
       85 天前
    在 X 上也能定义相对应的距离函数,只是这个距离函数和 R 上的正好一致。

    如果你称 X 为度量空间,不是已经自带了一个距离函数吗?为什么不能让这个距离函数和 R 上的一致呢?
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1099 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 22ms UTC 17:57 PVG 01:57 LAX 09:57 JFK 12:57
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86