三门问题,我列了一个表格,得到的结论是换不换都是 1/2,求解 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
tiancaixiaoshuai
V2EX    问与答

三门问题,我列了一个表格,得到的结论是换不换都是 1/2,求解

  •  1
     
  •   tiancaixiaoshuai 2024-11-13 11:39:41 +08:00 1661 次点击
    这是一个创建于 378 天前的主题,其中的信息可能已经有所发展或是发生改变。

    图片在下面

    文字版的描述:

    • 1 号门有奖,选手选择 1 号,主持人开 2 号,换 不中奖,不换 中奖
    • 1 号门有奖,选手选择 1 号,主持人开 3 号,换 不中奖,不换 中奖
    • 1 号门有奖,选手选择 2 号,主持人只能开 3 号,换 中奖,不换 不中奖
    • 1 号门有奖,选手选择 3 号,主持人只能开 2 号,换 中奖,不换 不中奖

    2 号和 3 号门的情况同理

    这样得出的结论是换不换都是 1/2,和科普的换是 2/3 ,不换是 1/3结果不一样,到底哪里有问题

    18 条回复    2024-11-13 16:59:42 +08:00
    momocraft
        1
    momocraft  
       2024-11-13 11:44:30 +08:00
    看不到图

    你列的 4 种情况不是等概率的
    McVander
        2
    McVander  
       2024-11-13 14:26:06 +08:00   1
    缺少一些情况
    奖在 1 号门,选手选 2 号门,主持人选 1 号门
    奖在 1 号门,选手选 3 号门,主持人选 1 号门
    等等类似的情况
    admol
        3
    admol  
       2024-11-13 14:32:56 +08:00
    你理解错了吧
    主持人没开之前是有三个门,选择 1 个,中的概率是 1/3 。
    开了门之后,相当于就只有 2 个门让你选了,那中的概率肯定就是 1/2 了啊。
    admol
        4
    admol  
       2024-11-13 14:33:51 +08:00
    中的概率又不是看你的换/不换。。。。。。
    akiyamamio
        5
    akiyamamio  
       2024-11-13 14:37:47 +08:00
    @McVander #2 你理解错了,主持人不能打开有奖的门
    RightHand
        6
    RightHand  
       2024-11-13 14:37:50 +08:00 via Android   2
    不去买彩票可惜了,毕竟是 50%的中间概率,毕竟只有中和不中
    ccpp132
        7
    ccpp132  
       2024-11-13 14:38:35 +08:00
    按你的表,主持人开之前选手都有 50%概率选中了
    McVander
        8
    McVander  
       2024-11-13 14:40:20 +08:00
    不换,从概率上就是 3 选 1 ,即 1/3
    换的话,主持人会排除一个选项,这个过程会产生变化,分两种情况理解:
    - 已选中:1/3 选择换 概率 1/3 x 0 = 0
    - 未选中:2/3 选择换 概率 2/3 x 1 = 2/3
    相加后概率为 2/3

    这里值得注意的是一开始未选中的话,主持人再帮你排除一个错误选项,剩下是必中的,所以概率是 1
    McVander
        9
    McVander  
       2024-11-13 14:41:43 +08:00
    @akiyamamio 查了一下,是的,主持人只能打开有羊的门
    JeffGe
        10
    JeffGe  
       2024-11-13 14:53:21 +08:00
    #1 说得没错,你列的四个情况不是等概率的。

    - 1 号门有奖,选手选择 1 号 (33.3%),主持人开 2 号 (50%),换 不中奖,不换 中奖 (合计 16.7%)
    - 1 号门有奖,选手选择 1 号 (33.3%),主持人开 3 号 (50%),换 不中奖,不换 中奖 (合计 16.7%)
    - 1 号门有奖,选手选择 2 号 (33.3%),主持人只能开 3 号 (100%),换 中奖,不换 不中奖 (合计 33.3%)
    - 1 号门有奖,选手选择 3 号 (33.3%),主持人只能开 2 号 (100%),换 中奖,不换 不中奖 (合计 33.3%)

    合计换中奖 2/3 ,不换 1/3 。
    MisakaTang
        11
    MisakaTang  
       2024-11-13 15:02:02 +08:00
    我的理解:
    如果你要这样列表应该要把所谓的(只能开 X 门)去掉的情况也列出来,比如:

    选手 2 主持人 1 而因为 1 有奖所以只能开 3 变成了
    选手 2 主持人 3 换 中 不换 不中

    你列表的时候把中奖的 2 种情况给忽略掉了
    NoOneNoBody
        12
    NoOneNoBody  
       2024-11-13 15:04:45 +08:00
    主持人只能开无奖的门和他可以开余下两门任意一个,概率是不同的
    前者是排除一个错误选项,那第二步骤概率是 50%
    后者是如果主持人开到有奖的门,选手直接判负,也要纳入统计

    还有不开门的情况,不知道是否题干已经不列入计算了:
    1. 主持人后弦,只是选门,不开门,不能排除错误,但选手也不能选这个了
    2. 主持人先选,只是选门,不开门,不能排除错误,但选手也不能选这个了
    如果事件分多个步骤,那这个事件概率要把所有步骤都纳入计算
    你想想科普应该说的是哪种情况
    shiny
        13
    shiny  
    PRO
       2024-11-13 15:07:14 +08:00
    题外话:概率问题最好玩的是它很反直觉,可以自己和朋友动手模拟,感受将更直观。
    fcten
        14
    fcten  
       2024-11-13 15:12:03 +08:00
    op 还是复杂了

    1. 中
    2. 不中

    所以结论 50%
    GuuJiang
        15
    GuuJiang  
       2024-11-13 15:12:45 +08:00 via iPhone
    所有在概率问题上嘴犟的人都有一招可破:真金白银玩几把就老实了
    当然,前提是对问题本身的认知是一致的,即:在三门问题中,主持人是知道哪里有车的,主持人永远只会开羊门
    atuocn
        16
    atuocn  
       2024-11-13 15:14:08 +08:00
    #5 主持人不能开有奖的门。但是从概率定义上,应该是全排列。只是规则上,让部分事件不发生。
    whitefable
        17
    whitefable  
       2024-11-13 16:31:17 +08:00
    简单来说问题是出在如上楼层所说的楼主你列的 4 种情况不是等概率的。展开说说其实是选手选择和主持人选择本身是分两个步骤,且非独立事件(主持人如何开还是依赖于选手选择的事件),这两个事件的总体概率计算如#10 所描述是合理的,楼主所谓的列出是隐含了 4 种情况均为 25%的概率所以不太对。
    其实我觉得有另一个很简易的想法是:P(换了中奖)+P(不换中奖)=100%。那这里显然计算 P(不换中奖)是比较容易的,即只取决于第一次选手的选择,那就是 1/3 概率可中奖;那此时 P(换了中奖)的概率自然就是 2/3
    tiancaixiaoshuai
        18
    tiancaixiaoshuai  
    OP
       2024-11-13 16:59:42 +08:00
    看了#8 #10 和 #17 的回复明白了 是我的计算方法错了
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     1679 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 23ms UTC 16:18 PVG 00:18 LAX 08:18 JFK 11:18
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86