请教一个 opencv 算法,图片中检测圆形对象 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
wjx0912
V2EX    OpenCV

请教一个 opencv 算法,图片中检测圆形对象

  •  
  •   wjx0912 2024-03-08 08:50:30 +08:00 2724 次点击
    这是一个创建于 584 天前的主题,其中的信息可能已经有所发展或是发生改变。

    图片发到 2 楼,大约 2000x2000 的图片,目标机器没有显卡。算法时间可以长一点,单张图片 10 秒也可以接受。

    测了下霍夫算法,好像时间太长了,而且准确度也没法保障。

    求一个思路( opencv 不太熟,里面好像有 svm,cnn,dnn 啥的不知道是否合适),万分感谢~~~

    24 条回复    2024-03-08 14:44:39 +08:00
    wjx0912
        3
    wjx0912  
    OP
       2024-03-08 08:53:43 +08:00
    wjx0912
        4
    wjx0912  
    OP
       2024-03-08 08:54:21 +08:00
    wjx0912
        5
    wjx0912  
    OP
       2024-03-08 08:55:07 +08:00
    wjx0912
        6
    wjx0912  
    OP
       2024-03-08 08:55:39 +08:00
    还请各位大佬不吝赐教~
    bluesenzhu
        7
    bluesenzhu  
       2024-03-08 09:01:22 +08:00
    你贴的什么,啥也看不到
    TheOutgoing
        8
    TheOutgoing  
       2024-03-08 09:11:33 +08:00
    YoLov5 应该可以,训练起来也简单
    sunshijie
        9
    sunshijie  
       2024-03-08 09:15:41 +08:00
    推荐 YoLov5 +1
    Muniesa
        10
    Muniesa  
       2024-03-08 09:15:56 +08:00 via Android
    霍夫圆的参数对结果影响很大,如果不需要拟合圆的话,直接 yolo 吧
    xinyu391
        11
    xinyu391  
       2024-03-08 09:21:51 +08:00
    yolov5 +1
    bluesenzhu
        12
    bluesenzhu  
       2024-03-08 09:22:00 +08:00   3
    如果全是这种有规律的图案,自己手搓代码(硬编码)速度应该可以在 0.1s 内。
    你这个肉眼看特征很明显,就是白底上的小圆,二值化后找轮廓,然后手工写代码判断下是不是圆
    alexsz
        13
    alexsz  
       2024-03-08 09:25:15 +08:00
    从图片上看特征还是比较明显的,第一步可以行把方形小纸片扣出来,因为圆形的直径和小纸片长宽基本保持在一个比例范围,所以可以根据小纸片尺寸指定一个适合的霍夫算法参数,第二步再用霍夫检测圆,如果检测出多个圆形,第三步可以再次根据圆形和小纸片的面积或者尺寸比例 排除一下
    1daydayde
        14
    1daydayde  
       2024-03-08 09:25:50 +08:00
    intel 的 CPU 的话可以用 openvino 来加速,跑 onnx 模型没那么慢。用上面提到的 yolov5 ,应该不难。
    CynicalRose
        15
    CynicalRose  
       2024-03-08 09:27:05 +08:00
    精度要求不高的话可以考虑传统算法,用 opencv 进行模板匹配。
    你可以先参考下: https://blog.csdn.net/yukinoai/article/details/88366234
    paopjian
        16
    paopjian  
       2024-03-08 09:36:33 +08:00
    我试了一下,霍夫曼检测好像没问题,就是不太准

    ![202403080934.png]( https://s2.loli.net/2024/03/08/egPqBYbjLNzriAC.png)

    代码是抄的 https://aistudio.baidu.com/projectdetail/649807
    wjx0912
        17
    wjx0912  
    OP
       2024-03-08 09:51:08 +08:00
    感谢大家~

    打算先试下霍夫(图片先缩放一下),然后 15 楼的模版匹配,然后再试试 yolo5
    wjx0912
        18
    wjx0912  
    OP
       2024-03-08 10:02:46 +08:00
    大概率不用霍夫,这个准确度是在是难以达到。。。
    Yuhyeong
        19
    Yuhyeong  
       2024-03-08 10:07:39 +08:00   1
    这种程度直接模式匹配就行了,用不上机器学习都。opencv 自带的有模式匹配函数
    sslzjx
        20
    sslzjx  
       2024-03-08 10:38:21 +08:00
    Halcon 代码,可以试下

    * This program fits circles into circular contour segments
    * to extract their positions and radii
    *
    dev_update_off ()
    *
    * step: acquire image
    *
    read_image (Image, 'OXfE6Ph.png')

    * auto_threshold (Image, all_Region, 15.0)
    * connection (all_Region, all_ConnectedRegions)
    * select_shape (all_ConnectedRegions, all_ConnectedRegions, 'area', 'and', 7000, 14000)
    * count_obj (all_ConnectedRegions, all_NumberContours)
    * for Index := 1 to all_NumberContours by 1
    * select_obj(all_ConnectedRegions, ObjectSelected1, Index)
    * smallest_rectangle1(ObjectSelected1, Row1, Column1, Row2, Column2)
    * crop_part(Image, ImagePart, Row1, Column1, Row2-Row1, Column2-Colu)
    * endfor

    get_image_size (Image, Width, Height)
    dev_close_window ()
    dev_open_window (0, 0, Width / 2, Height / 2, 'light gray', WindowID)
    dev_set_part (0, 0, Height - 1, Width - 1)
    dev_set_line_width (3)
    dev_set_color ('white')
    dev_set_draw ('margin')
    dev_display (Image)
    set_display_font (WindowID, 14, 'mono', 'true', 'false')
    disp_continue_message (WindowID, 'black', 'true')
    stop ()
    *
    * step: segment image into regions
    *
    dev_set_colored (12)
    dev_set_line_width (2)
    dev_set_draw ('fill')

    *equ_histo_image (Image, Image)
    scale_image_max (Image, Image)
    decompose3 (Image, Image_R, Image_G, Image_B)
    * fast_threshold (Image, Region, 180, 230, 20)
    auto_threshold (Image_G, Region, 5.0)
    stop()

    connection (Region, ConnectedRegions)
    select_shape (ConnectedRegions, SelectedRegions, 'circularity', 'and', 0.6, 1.2)
    select_shape (SelectedRegions, SelectedRegions, 'area', 'and', 200, 500)
    dev_display (Image)
    dev_display (SelectedRegions)
    disp_continue_message (WindowID, 'black', 'true')
    stop ()
    *
    * step: create ROI for contour processing
    *
    boundary (SelectedRegions, RegionBorder, 'inner_filled')
    dilation_circle (RegionBorder, RegionDilation, 3.5)
    union1 (RegionDilation, RegionUnion)
    reduce_domain (Image, RegionUnion, ImageReduced)
    dev_clear_window ()
    dev_display (ImageReduced)
    disp_continue_message (WindowID, 'black', 'true')
    stop ()
    *
    * step: create contours and fit circles to them
    *
    edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 10, 40)
    segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 5, 2, 2)
    select_contours_xld (ContoursSplit, SelectedContours, 'contour_length', 25, 99999, -0.5, 0.5)
    count_obj (SelectedContours, NumberContours)
    gen_empty_obj (Circles)
    for i := 1 to NumberContours by 1
    select_obj (SelectedContours, ObjectSelected, i)
    get_contour_global_attrib_xld (ObjectSelected, 'cont_approx', Attrib)
    if (Attrib == 1)
    concat_obj (Circles, ObjectSelected, Circles)
    endif
    endfor
    union_cocircular_contours_xld (Circles, UnionContours, rad(60), rad(10), rad(30), 100, 50, 10, 'true', 1)
    dev_clear_window ()
    dev_set_color ('black')
    dev_display (UnionContours)
    disp_continue_message (WindowID, 'black', 'true')
    stop ()
    count_obj (UnionContours, NumberCircles)
    CenterRow := []
    CenterColumn := []
    dev_clear_window ()
    dev_set_color ('black')
    set_display_font (WindowID, 12, 'mono', 'true', 'false')
    dev_display (SelectedContours)
    for i := 1 to NumberCircles by 1
    select_obj (UnionContours, ObjectSelected, i)
    fit_circle_contour_xld (ObjectSelected, 'algebraic', -1, 0, 0, 3, 2, Row, Column, Radius, StartPhi, EndPhi, PointOrder)
    gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, rad(360), 'positive', 1.5)
    dev_set_color ('white')
    dev_display (ContCircle)
    if (i == 1)
    Row2 := Row + Radius * sin(rad(-45))
    Column2 := Column + Radius * cos(rad(-45))
    set_tposition (WindowID, Row2 - 35, Column2 + 5)
    endif
    if (i > 1)
    exist := 0
    for j := 0 to i - 2 by 1
    distance_pp (Row, Column, CenterRow[j], CenterColumn[j], DistanceCenters)
    if (DistanceCenters < 20)
    exist := 1
    endif
    endfor
    if (exist == 1)
    Row2 := Row + Radius * sin(rad(-135))
    Column2 := Column + Radius * cos(rad(-135))
    set_tposition (WindowID, Row2 - 40, Column2 - 30)
    else
    Row2 := Row + Radius * sin(rad(-45))
    Column2 := Column + Radius * cos(rad(-45))
    set_tposition (WindowID, Row2 - 35, Column2 + 5)
    endif
    endif
    disp_arrow (WindowID, Row, Column, Row2, Column2, 2)
    write_string (WindowID, i)
    if (i < 8)
    disp_message (WindowID, 'R' + i + ' = ' + Radius$'.4', 'window', i * 20, 130, 'black', 'false')
    else
    disp_message (WindowID, 'R' + i + ' = ' + Radius$'.4', 'window', (i - 7) * 20, 400, 'black', 'false')
    endif
    CenterRow := [CenterRow,Row]
    CenterColumn := [CenterColumn,Column]
    endfor
    *
    dev_update_window ('on')
    lycpang
        21
    lycpang  
       2024-03-08 10:42:20 +08:00
    你换个思路,在白色的区域检测是不是有较大色差,是不是比检测形状简单多了。
    kyingstar
        22
    kyingstar  
       2024-03-08 11:18:08 +08:00
    https://github.com/bubbliiiing/yolov7-pytorch 可以用这个训练,本地训练太慢可以在 https://www.autodl.com/home 上训练
    czita
        23
    czita  
       2024-03-08 11:40:23 +08:00
    可以看下 opencv 的二值化和轮廓
    wjx0912
        24
    wjx0912  
    OP
       2024-03-08 14:44:39 +08:00
    @Yuhyeong 谢谢
    @sslzjx 谢谢,但是 halcon 不会,学习成本有点高了~
    @lycpang 这个感觉比 yolo 还要难一点。。。
    @czita 谢谢
    @kyingstar 嗯。周末试下。谢谢
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2903 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 25ms UTC 14:08 PVG 22:08 LAX 07:08 JFK 10:08
    Do have faith in what you're doing.
    ubao snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86