V2EX projected entangled pair state

Projected Entangled Pair State

定义 Definition

Projected entangled pair state(PEPS)投影纠缠对态,一种用于描述量子多体系统(尤其是二维格点系统)的张量网络波函数表示方法。它把系统看作由许多“纠缠对”(虚拟自由度)连接起来,再通过“投影”把虚拟空间映射到每个格点的物理空间。常用于量子凝聚态物理与量子信息中的数值模拟与理论分析。

发音 Pronunciation (IPA)

/prdktd ntld pr stet/

例句 Examples

A projected entangled pair state can represent a two-dimensional quantum lattice efficiently.
投影纠缠对态可以较高效地表示二维量子格点系统。

Using a projected entangled pair state, researchers approximate the ground state of an interacting model by optimizing local tensors under entanglement constraints.
研究者使用投影纠缠对态,通过在纠缠约束下优化局部张量来近似求解相互作用模型的基态。

词源 Etymology

这是一个组合术语

  • projected(“投影的”)指把“虚拟”纠缠自由度通过线性映射(投影/映射算符)变成可观测的物理自由度
  • entangled pair(“纠缠对”)源于量子信息中常见的成对纠缠资源(类似 EPR 对/贝尔对的概念);
  • state(“态”)是量子力学中系统的波函数/密度算符所描述的状态。
    整体名称强调其构造方式:由纠缠对出发,经投影得到多体量子态

相关词 Related Words

文献与著作中的用例 Literary / Notable Works

  • Verstraete, F., & Cirac, J. I. (2004). Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions(提出并系统化二维及更高维的 PEPS 思想)。
  • Orús, R. (2014). A practical introduction to tensor networks: Matrix product states and projected entangled pair states(综述性文章,面向学习者介绍 PEPS)。
  • Schollwck, U. (2011). The density-matrix renormalization group in the age of matrix product states(虽重点在 MPS/DMRG,但在张量网络框架下常与 PEPS 并列讨论)。
关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2153 人在线   最高记录 6679       Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 7ms UTC 03:06 PVG 11:06 LAX 19:06 JFK 22:06
Do have faith in what you're doing.
ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86