

仓库地址:https://github.com/webws/embedding-knowledge-base
kabi 是使用 golang 基于 openai chatgpt embedding + qdrant 实现知识库的导入和问答
kabi -h a local knowledge base, based on chatgpt and qdrant usage: kbai [flags] kbai [command] available commands: completion generate the autocompletion script for the specified shell help help about any command import import data to vector database search ask the knowledge base example: kbai ask --msg 'first, the chicken or the egg' flags: --apikey string openai apikey:default from env apikey --collection string qdrant collection name default: kubernetes (default "kubernetes") -h, --help help for kbai --proxy string http client proxy default:socks5://127.0.0.1:1080 (default "socks5://127.0.0.1:1080") --qdrant string qdrant address default: 127.0.0.1:6334 (default "127.0.0.1:6334") --vectorsize uint qdrant vector size default: 1536 (default 1536) use "kbai [command] --help" for more information about a command. qdrant 是一个开源的向量搜索引擎,支持多种向量距离计算方式
docker 运行 qdrant
docker run --rm -p 6334:6334 qdrant/qdrant clone 源码运行(后续提供二进制文件)
git clone https://github.com/webws/embedding-knowledge-base.git cd ./embedding-knowledge-base 这里使用的测试数据是 k8s 相关的知识库,真实数据需自己准备
1.设置 openai apikey
export apikey=xxx 2.导入知识库(源码运行)
go run ./ import --datafile ./example/data.json data.json 数据格式如下,为 真实数据需自己准备
[ { "questions": "这是问题", "answers": "这是答案" }, ] 说明:
默认的 代理 是 "socks5://127.0.0.1:1080" 自定义 可使用 --proxy 指定 搜索问题(源码执行)
go run ./ search --msg "网关是什么" 回答
the answer to the knowledge base: 在 kubernetes 中,网关通常指的是 ingress (入 口)资源对象。ingress 是一种 kubernetes api 对象,用于配置和管理集群中的 http 和 https 流量入口。它充当了从集群外部访问集群内部服务的入口点 results of chatgpt answers with reference answers: ,同时提供负载均衡、ssl/tls 终止和基于域名的路由等功能。ingress 资源对象定义了一组规则,这些规则指定了通过特定 http 路径或主机名将请求路由到后端服务的方式。可以使用不同的 ingress 控制器实现这些规则,如 nginx 、traefik 等。这样就可以在集群中创建多个 ingress 资源对象来管理不同的流量入口。 only chatgpt answers: 网关是一种网络设备,用于连接两个或多个不同类型的网络,以便实现数据以不同协议进行传递和转换。网关起到了连接不同网络之间的桥梁作用,将两个或多个网络互相连接起来,并负责数据的路由和转发。网关可以是硬件设备,如路由器,也可以是软件程序,如互联网网关。网关通常用于连接本地网络与互联网,使得局域网中的计算机能够访问互联网上的资源。除了连接不同网络的功能,网关还可以实现安全性、负载均衡、数据过滤等功能。 可以看出 直接问 chatgpt,得到的答案可能跟 k8s 无关,结合 k8s 本地知识库,可以让回答偏向 数据集设定的主题
如果直接搜索 与知识库无关或违规问题,将搜索不到任务数据
go run ./ search --msg "苹果不洗能吃吗" rearch term violation or exceeding category 以下是 kbai go 导入逻辑代码
qdrantclient := qdrant.newqdrantclient(configflags.qdrant, configflags.collection, configflags.vectorsize) defer qdrantclient.close() aiclient, err := ai.newaiclient(configflags.proxy, configflags.apikey) if err != nil { return err } if err = qdrantclient.createcollection(configflags.collection, configflags.vectorsize); err != nil { return err } qas, err := converttoqas(datafile) if err != nil { return err } points := []*pb.pointstruct{} logger.infow("import", "data", qas) qpslenth := len(qas) for i, qa := range qas { embedding, err := aiclient.simplegetvec(qa.questions) if err != nil { logger.errorw("simplegetvec", "err", err, "question", qa.questions, "index", i, "total", qpslenth) return err } point := buildpoint(qa.questions, qa.answers, embedding) points = append(points, point) } 1 xyy003 PRO 解释原始知识库数据 为 q(问) a(答) 这一步是怎么转变的 |
2 websong188 OP @xyy003 这个应该是原始数据。大概是 golang 将原始数据文件 转换为 qa 数组,再将 qa 中的 q 通过 openai 获取到 embeddin,和 a 一起存入 qdrant 知识库 |
3 xyy003 PRO @websong188 那如何确保转换的 qa 数组的有效性呢 有相关的 prompt 吗 |
4 websong188 OP @xyy003 真实的知识库原始数据 需要自己提供,搜索的 prompt 规则是 用户问题+知识库的答案(参考答案) 的组合,得到偏向于 已有知识库设定的主题 扩展知识回答,当搜索的问题与 知识库的答案(参考答案) 相似度太低,就不给答案,防止问违规,知识库以外的问题 |